BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 24016351)

  • 21. Yeast surface display of dehydrogenases in microbial fuel-cells.
    Gal I; Schlesinger O; Amir L; Alfonta L
    Bioelectrochemistry; 2016 Dec; 112():53-60. PubMed ID: 27459246
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Glycosylations and truncations of functional cereal phytases expressed and secreted by Pichia pastoris documented by mass spectrometry.
    Dionisio G; Jørgensen M; Welinder KG; Brinch-Pedersen H
    Protein Expr Purif; 2012 Mar; 82(1):179-85. PubMed ID: 22240269
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Structural studies of alpha-N-acetylgalactosaminidase: effect of glycosylation on the level of expression, secretion efficiency, and enzyme activity.
    Zhu A; Wang ZK; Beavis R
    Arch Biochem Biophys; 1998 Apr; 352(1):1-8. PubMed ID: 9521804
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Glycosylation analysis of recombinant neutral protease I from Aspergillus oryzae expressed in Pichia pastoris.
    Lei D; Xu Y; He Q; Pang Y; Chen B; Xiong L; Li Y
    Biotechnol Lett; 2013 Dec; 35(12):2121-7. PubMed ID: 24078118
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Identification of the N-glycosylation sites on recombinant bovine CD38 expressed in Pichia pastoris: their impact on enzyme stability and catalytic activity.
    Muller-Steffner H; Kuhn I; Argentini M; Schuber F
    Protein Expr Purif; 2010 Apr; 70(2):151-7. PubMed ID: 19818407
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The role of N-glycosylation sites in the activity, stability, and expression of the recombinant elastase expressed by Pichia pastoris.
    Han M; Wang X; Ding H; Jin M; Yu L; Wang J; Yu X
    Enzyme Microb Technol; 2014 Jan; 54():32-7. PubMed ID: 24267565
    [TBL] [Abstract][Full Text] [Related]  

  • 27. N-Glycosylation enhances functional and structural stability of recombinant β-glucuronidase expressed in Pichia pastoris.
    Zou S; Huang S; Kaleem I; Li C
    J Biotechnol; 2013 Mar; 164(1):75-81. PubMed ID: 23313889
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Semi-rational engineering of cellobiose dehydrogenase for improved hydrogen peroxide production.
    Sygmund C; Santner P; Krondorfer I; Peterbauer CK; Alcalde M; Nyanhongo GS; Guebitz GM; Ludwig R
    Microb Cell Fact; 2013 Apr; 12():38. PubMed ID: 23617537
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Expression of cellobiose dehydrogenase from Neurospora crassa in Pichia pastoris and its purification and characterization.
    Zhang R; Fan Z; Kasuga T
    Protein Expr Purif; 2011 Jan; 75(1):63-9. PubMed ID: 20709172
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Pyranose 2-dehydrogenase, a novel sugar oxidoreductase from the basidiomycete fungus Agaricus bisporus.
    Volc J; Kubátová E; Wood DA; Daniel G
    Arch Microbiol; 1997; 167(2-3):119-25. PubMed ID: 9133318
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Expression of an extremely acidic beta-1,4-glucanase from thermoacidophilic Alicyclobacillus sp. A4 in Pichia pastoris is improved by truncating the gene sequence.
    Bai Y; Wang J; Zhang Z; Shi P; Luo H; Huang H; Luo C; Yao B
    Microb Cell Fact; 2010 May; 9():33. PubMed ID: 20465851
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Heterologous expression of Phanerochaete chrysosporium cellobiose dehydrogenase in Trichoderma reesei.
    Wohlschlager L; Csarman F; Chang H; Fitz E; Seiboth B; Ludwig R
    Microb Cell Fact; 2021 Jan; 20(1):2. PubMed ID: 33407462
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Improvement of catalytical properties of two invertases highly tolerant to sucrose after expression in Pichia pastoris. Effect of glycosylation on enzyme properties.
    Pérez de los Santos AI; Cayetano-Cruz M; Gutiérrez-Antón M; Santiago-Hernández A; Plascencia-Espinosa M; Farrés A; Hidalgo-Lara ME
    Enzyme Microb Technol; 2016 Feb; 83():48-56. PubMed ID: 26777250
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Molecular and catalytic properties of fungal extracellular cellobiose dehydrogenase produced in prokaryotic and eukaryotic expression systems.
    Ma S; Preims M; Piumi F; Kappel L; Seiboth B; Record E; Kracher D; Ludwig R
    Microb Cell Fact; 2017 Feb; 16(1):37. PubMed ID: 28245812
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Probing active-site residues of pyranose 2-oxidase from Trametes multicolor by semi-rational protein design.
    Salaheddin C; Spadiut O; Ludwig R; Tan TC; Divne C; Haltrich D; Peterbauer C
    Biotechnol J; 2009 Apr; 4(4):535-43. PubMed ID: 19370721
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Recombinantly produced cellobiose dehydrogenase from Corynascus thermophilus for glucose biosensors and biofuel cells.
    Harreither W; Felice AK; Paukner R; Gorton L; Ludwig R; Sygmund C
    Biotechnol J; 2012 Nov; 7(11):1359-66. PubMed ID: 22815189
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Mutual enhancement of the current density and the coulombic efficiency for a bioanode by entrapping bi-enzymes with Os-complex modified electrodeposition paints.
    Shao M; Zafar MN; Sygmund C; Guschin DA; Ludwig R; Peterbauer CK; Schuhmann W; Gorton L
    Biosens Bioelectron; 2013 Feb; 40(1):308-14. PubMed ID: 22959203
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Characterization of the two Neurospora crassa cellobiose dehydrogenases and their connection to oxidative cellulose degradation.
    Sygmund C; Kracher D; Scheiblbrandner S; Zahma K; Felice AK; Harreither W; Kittl R; Ludwig R
    Appl Environ Microbiol; 2012 Sep; 78(17):6161-71. PubMed ID: 22729546
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Expression, crystallization, and three-dimensional structure of the catalytic domain of human plasma kallikrein.
    Tang J; Yu CL; Williams SR; Springman E; Jeffery D; Sprengeler PA; Estevez A; Sampang J; Shrader W; Spencer J; Young W; McGrath M; Katz BA
    J Biol Chem; 2005 Dec; 280(49):41077-89. PubMed ID: 16199530
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Characterization of pyranose oxidase variants for bioelectrocatalytic applications.
    Abrera AT; Chang H; Kracher D; Ludwig R; Haltrich D
    Biochim Biophys Acta Proteins Proteom; 2020 Feb; 1868(2):140335. PubMed ID: 31785381
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.