BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 24016626)

  • 1. LC-ICP-MS analysis of arsenic compounds in dominant seaweeds from the Thermaikos Gulf (Northern Aegean Sea, Greece).
    Pell A; Kokkinis G; Malea P; Pergantis SA; Rubio R; López-Sánchez JF
    Chemosphere; 2013 Nov; 93(9):2187-94. PubMed ID: 24016626
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Measurement of arsenic compounds in littoral zone algae from the Western Mediterranean Sea. Occurrence of arsenobetaine.
    Llorente-Mirandes T; Ruiz-Chancho MJ; Barbero M; Rubio R; López-Sánchez JF
    Chemosphere; 2010 Nov; 81(7):867-75. PubMed ID: 20880567
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Two-dimensional HPLC coupled to ICP-MS and electrospray ionisation (ESI)-MS/MS for investigating the bioavailability in vitro of arsenic species from edible seaweed.
    Garcia-Sartal C; Taebunpakul S; Stokes E; Barciela-Alonso Mdel C; Bermejo-Barrera P; Goenaga-Infante H
    Anal Bioanal Chem; 2012 Apr; 402(10):3359-69. PubMed ID: 22012212
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Determination of water-soluble arsenic compounds in commercial edible seaweed by LC-ICPMS.
    Llorente-Mirandes T; Ruiz-Chancho MJ; Barbero M; Rubio R; López-Sánchez JF
    J Agric Food Chem; 2011 Dec; 59(24):12963-8. PubMed ID: 22082352
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Arsenosugars and other arsenic compounds in littoral zone algae from the Adriatic Sea.
    Slejkovec Z; Kápolna E; Ipolyi I; van Elteren JT
    Chemosphere; 2006 May; 63(7):1098-105. PubMed ID: 16289244
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Application of HPLC-ICP-MS and HPLC-ESI-MS procedures for arsenic speciation in seaweeds.
    Hsieh YJ; Jiang SJ
    J Agric Food Chem; 2012 Mar; 60(9):2083-9. PubMed ID: 22339408
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Rapid determination of arsenic species in freshwater organisms from the arsenic-rich Hayakawa River in Japan using HPLC-ICP-MS.
    Miyashita S; Shimoya M; Kamidate Y; Kuroiwa T; Shikino O; Fujiwara S; Francesconi KA; Kaise T
    Chemosphere; 2009 May; 75(8):1065-73. PubMed ID: 19203781
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A New Candidate Reference Material for Inorganic Arsenic and Arsenosugars in Hijiki Seaweed: First Results from an Inter-laboratory Study.
    Narukawa T; Raber G; Itoh N; Inagaki K
    Anal Sci; 2020; 36(2):233-237. PubMed ID: 32037373
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An improved rapid analytical method for the arsenic speciation analysis of marine environmental samples using high-performance liquid chromatography/inductively coupled plasma mass spectrometry.
    Park MK; Choi M; Kim L; Choi SD
    Environ Monit Assess; 2019 Jul; 191(8):525. PubMed ID: 31363866
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Survey of arsenic content in edible seaweeds and their health risk assessment.
    Yu Y; Morales-Rodriguez A; Zhou G; Barrón D; Sahuquillo À; López-Sánchez JF
    Food Chem Toxicol; 2024 May; 187():114603. PubMed ID: 38499235
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Seaweeds along KwaZulu-Natal Coast of South Africa--4: Elemental uptake by edible seaweed Caulerpa racemosa (sea grapes) and the arsenic speciation.
    Misheer N; Kindness A; Jonnalagadda SB
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2006; 41(7):1217-33. PubMed ID: 16854796
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Arsenic speciation in fish from Greek coastal areas.
    Kalantzi I; Mylona K; Sofoulaki K; Tsapakis M; Pergantis SA
    J Environ Sci (China); 2017 Jun; 56():300-312. PubMed ID: 28571867
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Occurrence of arsenic species in algae and freshwater plants of an extreme arid region in northern Chile, the Loa River Basin.
    Pell A; Márquez A; López-Sánchez JF; Rubio R; Barbero M; Stegen S; Queirolo F; Díaz-Palma P
    Chemosphere; 2013 Jan; 90(2):556-64. PubMed ID: 22981629
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cd, Cr, Cu, Pb, and Zn concentrations in Ulva lactuca, Codium fragile, Jania rubens, and Dictyota dichotoma from Rabta Bay, Jijel (Algeria).
    Laib E; Leghouchi E
    Environ Monit Assess; 2012 Mar; 184(3):1711-8. PubMed ID: 21755430
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Trace element seasonality in marine macroalgae of different functional-form groups.
    Malea P; Chatziapostolou A; Kevrekidis T
    Mar Environ Res; 2015 Feb; 103():18-26. PubMed ID: 25460058
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Arsenic K-edge X-ray absorption spectroscopy of arsenic in seafood.
    George GN; Prince RC; Singh SP; Pickering IJ
    Mol Nutr Food Res; 2009 May; 53(5):552-7. PubMed ID: 19072885
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Distribution of arsenic compounds in Mytilus galloprovincialis of the Venice lagoon (Italy).
    Argese E; Bettiol C; Rigo C; Bertini S; Colomban S; Ghetti PF
    Sci Total Environ; 2005 Sep; 348(1-3):267-77. PubMed ID: 16162330
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Trace element patterns in marine macroalgae.
    Malea P; Kevrekidis T
    Sci Total Environ; 2014 Oct; 494-495():144-57. PubMed ID: 25044070
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Investigation of common chemical components and inhibitory effect on GES-type β-lactamase (GES22) in methanolic extracts of Algerian seaweeds.
    Houchi S; Mahdadi R; Khenchouche A; Song J; Zhang W; Pang X; Zhang L; Sandalli C; Du G
    Microb Pathog; 2019 Jan; 126():56-62. PubMed ID: 30393116
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Concentrations and speciation of arsenic in New England seaweed species harvested for food and agriculture.
    Taylor VF; Jackson BP
    Chemosphere; 2016 Nov; 163():6-13. PubMed ID: 27517127
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.