BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

361 related articles for article (PubMed ID: 2401796)

  • 1. Detection and differentiation of Chlamydia trachomatis, Chlamydia psittaci, and Chlamydia pneumoniae by DNA amplification.
    Holland SM; Gaydos CA; Quinn TC
    J Infect Dis; 1990 Oct; 162(4):984-7. PubMed ID: 2401796
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Touchdown enzyme time release-PCR for detection and identification of Chlamydia trachomatis, C. pneumoniae, and C. psittaci using the 16S and 16S-23S spacer rRNA genes.
    Madico G; Quinn TC; Boman J; Gaydos CA
    J Clin Microbiol; 2000 Mar; 38(3):1085-93. PubMed ID: 10699002
    [TBL] [Abstract][Full Text] [Related]  

  • 3. PCR detection and differentiation of Chlamydia pneumoniae, Chlamydia psittaci and Chlamydia trachomatis.
    Rasmussen SJ; Douglas FP; Timms P
    Mol Cell Probes; 1992 Oct; 6(5):389-94. PubMed ID: 1361961
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Distinguishing Chlamydia species by restriction analysis of the major outer membrane protein gene.
    Black CM; Tharpe JA; Russell H
    Mol Cell Probes; 1992 Oct; 6(5):395-400. PubMed ID: 1361962
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Genetic diversity and identification of human infection by amplification of the chlamydial 60-kilodalton cysteine-rich outer membrane protein gene.
    Watson MW; Lambden PR; Clarke IN
    J Clin Microbiol; 1991 Jun; 29(6):1188-93. PubMed ID: 1864938
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Detection and strain differentiation of Chlamydia psittaci mediated by a two-step polymerase chain reaction.
    Kaltenboeck B; Kousoulas KG; Storz J
    J Clin Microbiol; 1991 Sep; 29(9):1969-75. PubMed ID: 1774323
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Typing Chlamydia trachomatis by detection of restriction fragment length polymorphism in the gene encoding the major outer membrane protein.
    Frost EH; Deslandes S; Veilleux S; Bourgaux-Ramoisy D
    J Infect Dis; 1991 May; 163(5):1103-7. PubMed ID: 1673464
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A polymerase chain reaction (PCR) protocol for the specific detection of Chlamydia spp.
    Pollard DR; Tyler SD; Ng CW; Rozee KR
    Mol Cell Probes; 1989 Dec; 3(4):383-9. PubMed ID: 2615767
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Phylogenetic relationship of Chlamydia pneumoniae to Chlamydia psittaci and Chlamydia trachomatis as determined by analysis of 16S ribosomal DNA sequences.
    Gaydos CA; Palmer L; Quinn TC; Falkow S; Eiden JJ
    Int J Syst Bacteriol; 1993 Jul; 43(3):610-2. PubMed ID: 8347519
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structures of and allelic diversity and relationships among the major outer membrane protein (ompA) genes of the four chlamydial species.
    Kaltenboeck B; Kousoulas KG; Storz J
    J Bacteriol; 1993 Jan; 175(2):487-502. PubMed ID: 8419295
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparison of the major outer-membrane protein (MOMP) gene of mouse pneumonitis (MoPn) and hamster SFPD strains of Chlamydia trachomatis with other Chlamydia strains.
    Zhang YX; Fox JG; Ho Y; Zhang L; Stills HF; Smith TF
    Mol Biol Evol; 1993 Nov; 10(6):1327-42. PubMed ID: 8277858
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Polymerase chain reaction (PCR) detection of porcine Chlamydia trachomatis and ruminant Chlamydia psittaci serovar 1 DNA in formalin-fixed intestinal specimens from swine.
    Schiller I; Koesters R; Weilenmann R; Kaltenboeck B; Pospischil A
    Zentralbl Veterinarmed B; 1997 May; 44(3):185-91. PubMed ID: 9197211
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Genomic relatedness of Chlamydia isolates determined by amplified fragment length polymorphism analysis.
    Meijer A; Morré SA; van den Brule AJ; Savelkoul PH; Ossewaarde JM
    J Bacteriol; 1999 Aug; 181(15):4469-75. PubMed ID: 10419941
    [TBL] [Abstract][Full Text] [Related]  

  • 14. PCR-based diagnosis, molecular characterization and detection of atypical strains of avian Chlamydia psittaci in companion and wild birds.
    Madani SA; Peighambari SM
    Avian Pathol; 2013 Feb; 42(1):38-44. PubMed ID: 23391180
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evolutionary relationships among members of the genus Chlamydia based on 16S ribosomal DNA analysis.
    Pettersson B; Andersson A; Leitner T; Olsvik O; Uhlén M; Storey C; Black CM
    J Bacteriol; 1997 Jul; 179(13):4195-205. PubMed ID: 9209033
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Detection of Chlamydia pneumoniae and Chlamydia psittaci in sputum samples by PCR.
    Tong CY; Sillis M
    J Clin Pathol; 1993 Apr; 46(4):313-7. PubMed ID: 8496387
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Two-step polymerase chain reactions and restriction endonuclease analyses detect and differentiate ompA DNA of Chlamydia spp.
    Kaltenboeck B; Kousoulas KG; Storz J
    J Clin Microbiol; 1992 May; 30(5):1098-104. PubMed ID: 1349899
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Recombination in the ompA gene but not the omcB gene of Chlamydia contributes to serovar-specific differences in tissue tropism, immune surveillance, and persistence of the organism.
    Millman KL; Tavaré S; Dean D
    J Bacteriol; 2001 Oct; 183(20):5997-6008. PubMed ID: 11567000
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Amplification of Chlamydia trachomatis DNA by ligase chain reaction.
    Dille BJ; Butzen CC; Birkenmeyer LG
    J Clin Microbiol; 1993 Mar; 31(3):729-31. PubMed ID: 8458974
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Rapid genotyping of the Chlamydia trachomatis major outer membrane protein by the polymerase chain reaction.
    Sayada C; Denamur E; Orfila J; Catalan F; Elion J
    FEMS Microbiol Lett; 1991 Sep; 67(1):73-8. PubMed ID: 1778424
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.