These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
356 related articles for article (PubMed ID: 2401796)
1. Detection and differentiation of Chlamydia trachomatis, Chlamydia psittaci, and Chlamydia pneumoniae by DNA amplification. Holland SM; Gaydos CA; Quinn TC J Infect Dis; 1990 Oct; 162(4):984-7. PubMed ID: 2401796 [TBL] [Abstract][Full Text] [Related]
2. Touchdown enzyme time release-PCR for detection and identification of Chlamydia trachomatis, C. pneumoniae, and C. psittaci using the 16S and 16S-23S spacer rRNA genes. Madico G; Quinn TC; Boman J; Gaydos CA J Clin Microbiol; 2000 Mar; 38(3):1085-93. PubMed ID: 10699002 [TBL] [Abstract][Full Text] [Related]
3. PCR detection and differentiation of Chlamydia pneumoniae, Chlamydia psittaci and Chlamydia trachomatis. Rasmussen SJ; Douglas FP; Timms P Mol Cell Probes; 1992 Oct; 6(5):389-94. PubMed ID: 1361961 [TBL] [Abstract][Full Text] [Related]
4. Distinguishing Chlamydia species by restriction analysis of the major outer membrane protein gene. Black CM; Tharpe JA; Russell H Mol Cell Probes; 1992 Oct; 6(5):395-400. PubMed ID: 1361962 [TBL] [Abstract][Full Text] [Related]
5. Genetic diversity and identification of human infection by amplification of the chlamydial 60-kilodalton cysteine-rich outer membrane protein gene. Watson MW; Lambden PR; Clarke IN J Clin Microbiol; 1991 Jun; 29(6):1188-93. PubMed ID: 1864938 [TBL] [Abstract][Full Text] [Related]
6. Detection and strain differentiation of Chlamydia psittaci mediated by a two-step polymerase chain reaction. Kaltenboeck B; Kousoulas KG; Storz J J Clin Microbiol; 1991 Sep; 29(9):1969-75. PubMed ID: 1774323 [TBL] [Abstract][Full Text] [Related]
7. Typing Chlamydia trachomatis by detection of restriction fragment length polymorphism in the gene encoding the major outer membrane protein. Frost EH; Deslandes S; Veilleux S; Bourgaux-Ramoisy D J Infect Dis; 1991 May; 163(5):1103-7. PubMed ID: 1673464 [TBL] [Abstract][Full Text] [Related]
8. A polymerase chain reaction (PCR) protocol for the specific detection of Chlamydia spp. Pollard DR; Tyler SD; Ng CW; Rozee KR Mol Cell Probes; 1989 Dec; 3(4):383-9. PubMed ID: 2615767 [TBL] [Abstract][Full Text] [Related]
9. Phylogenetic relationship of Chlamydia pneumoniae to Chlamydia psittaci and Chlamydia trachomatis as determined by analysis of 16S ribosomal DNA sequences. Gaydos CA; Palmer L; Quinn TC; Falkow S; Eiden JJ Int J Syst Bacteriol; 1993 Jul; 43(3):610-2. PubMed ID: 8347519 [TBL] [Abstract][Full Text] [Related]
10. Structures of and allelic diversity and relationships among the major outer membrane protein (ompA) genes of the four chlamydial species. Kaltenboeck B; Kousoulas KG; Storz J J Bacteriol; 1993 Jan; 175(2):487-502. PubMed ID: 8419295 [TBL] [Abstract][Full Text] [Related]
11. Comparison of the major outer-membrane protein (MOMP) gene of mouse pneumonitis (MoPn) and hamster SFPD strains of Chlamydia trachomatis with other Chlamydia strains. Zhang YX; Fox JG; Ho Y; Zhang L; Stills HF; Smith TF Mol Biol Evol; 1993 Nov; 10(6):1327-42. PubMed ID: 8277858 [TBL] [Abstract][Full Text] [Related]
12. Polymerase chain reaction (PCR) detection of porcine Chlamydia trachomatis and ruminant Chlamydia psittaci serovar 1 DNA in formalin-fixed intestinal specimens from swine. Schiller I; Koesters R; Weilenmann R; Kaltenboeck B; Pospischil A Zentralbl Veterinarmed B; 1997 May; 44(3):185-91. PubMed ID: 9197211 [TBL] [Abstract][Full Text] [Related]
13. Genomic relatedness of Chlamydia isolates determined by amplified fragment length polymorphism analysis. Meijer A; Morré SA; van den Brule AJ; Savelkoul PH; Ossewaarde JM J Bacteriol; 1999 Aug; 181(15):4469-75. PubMed ID: 10419941 [TBL] [Abstract][Full Text] [Related]
14. PCR-based diagnosis, molecular characterization and detection of atypical strains of avian Chlamydia psittaci in companion and wild birds. Madani SA; Peighambari SM Avian Pathol; 2013 Feb; 42(1):38-44. PubMed ID: 23391180 [TBL] [Abstract][Full Text] [Related]
15. Evolutionary relationships among members of the genus Chlamydia based on 16S ribosomal DNA analysis. Pettersson B; Andersson A; Leitner T; Olsvik O; Uhlén M; Storey C; Black CM J Bacteriol; 1997 Jul; 179(13):4195-205. PubMed ID: 9209033 [TBL] [Abstract][Full Text] [Related]
16. Detection of Chlamydia pneumoniae and Chlamydia psittaci in sputum samples by PCR. Tong CY; Sillis M J Clin Pathol; 1993 Apr; 46(4):313-7. PubMed ID: 8496387 [TBL] [Abstract][Full Text] [Related]
17. Two-step polymerase chain reactions and restriction endonuclease analyses detect and differentiate ompA DNA of Chlamydia spp. Kaltenboeck B; Kousoulas KG; Storz J J Clin Microbiol; 1992 May; 30(5):1098-104. PubMed ID: 1349899 [TBL] [Abstract][Full Text] [Related]
18. Recombination in the ompA gene but not the omcB gene of Chlamydia contributes to serovar-specific differences in tissue tropism, immune surveillance, and persistence of the organism. Millman KL; Tavaré S; Dean D J Bacteriol; 2001 Oct; 183(20):5997-6008. PubMed ID: 11567000 [TBL] [Abstract][Full Text] [Related]
19. Amplification of Chlamydia trachomatis DNA by ligase chain reaction. Dille BJ; Butzen CC; Birkenmeyer LG J Clin Microbiol; 1993 Mar; 31(3):729-31. PubMed ID: 8458974 [TBL] [Abstract][Full Text] [Related]
20. Rapid genotyping of the Chlamydia trachomatis major outer membrane protein by the polymerase chain reaction. Sayada C; Denamur E; Orfila J; Catalan F; Elion J FEMS Microbiol Lett; 1991 Sep; 67(1):73-8. PubMed ID: 1778424 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]