These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

1292 related articles for article (PubMed ID: 24018362)

  • 41. Epidermal growth factor receptor (EGFR)-targeted immunoliposomes mediate specific and efficient drug delivery to EGFR- and EGFRvIII-overexpressing tumor cells.
    Mamot C; Drummond DC; Greiser U; Hong K; Kirpotin DB; Marks JD; Park JW
    Cancer Res; 2003 Jun; 63(12):3154-61. PubMed ID: 12810643
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Polymeric nanoparticles for drug delivery.
    Chan JM; Valencia PM; Zhang L; Langer R; Farokhzad OC
    Methods Mol Biol; 2010; 624():163-75. PubMed ID: 20217595
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Improving the systemic drug delivery efficacy of nanoparticles using a transferrin variant for targeting.
    Chiu RY; Tsuji T; Wang SJ; Wang J; Liu CT; Kamei DT
    J Control Release; 2014 Apr; 180():33-41. PubMed ID: 24524898
    [TBL] [Abstract][Full Text] [Related]  

  • 44. A critical evaluation of drug delivery from ligand modified nanoparticles: Confounding small molecule distribution and efficacy in the central nervous system.
    Cook RL; Householder KT; Chung EP; Prakapenka AV; DiPerna DM; Sirianni RW
    J Control Release; 2015 Dec; 220(Pt A):89-97. PubMed ID: 26471392
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Albumin Nanoparticles Increase the Efficacy of Doxorubicin Hydrochloride Liposome Injection Based on Threshold Theory.
    Lin W; Li A; Qiu L; Huang H; Cui P; Wang J
    Mol Pharm; 2024 Jun; 21(6):2970-2980. PubMed ID: 38742943
    [TBL] [Abstract][Full Text] [Related]  

  • 46. What nanomedicine in the clinic right now really forms nanoparticles?
    Svenson S
    Wiley Interdiscip Rev Nanomed Nanobiotechnol; 2014; 6(2):125-35. PubMed ID: 24415653
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Evaluation of Polymeric Nanomedicines Targeted to PSMA: Effect of Ligand on Targeting Efficiency.
    Fuchs AV; Tse BW; Pearce AK; Yeh MC; Fletcher NL; Huang SS; Heston WD; Whittaker AK; Russell PJ; Thurecht KJ
    Biomacromolecules; 2015 Oct; 16(10):3235-47. PubMed ID: 26335533
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Tumor-targeted nanomedicines for cancer theranostics.
    Arranja AG; Pathak V; Lammers T; Shi Y
    Pharmacol Res; 2017 Jan; 115():87-95. PubMed ID: 27865762
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Insight into nanoparticle cellular uptake and intracellular targeting.
    Yameen B; Choi WI; Vilos C; Swami A; Shi J; Farokhzad OC
    J Control Release; 2014 Sep; 190():485-99. PubMed ID: 24984011
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Patented nanomedicines for the treatment of brain tumors.
    Caruso G; Raudino G; Caffo M
    Pharm Pat Anal; 2013 Nov; 2(6):745-54. PubMed ID: 24237240
    [TBL] [Abstract][Full Text] [Related]  

  • 51. DNA Origami-Enabled Engineering of Ligand-Drug Conjugates for Targeted Drug Delivery.
    Ge Z; Guo L; Wu G; Li J; Sun Y; Hou Y; Shi J; Song S; Wang L; Fan C; Lu H; Li Q
    Small; 2020 Apr; 16(16):e1904857. PubMed ID: 32191376
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Advances in nanomedicines for malaria treatment.
    Aditya NP; Vathsala PG; Vieira V; Murthy RS; Souto EB
    Adv Colloid Interface Sci; 2013 Dec; 201-202():1-17. PubMed ID: 24192063
    [TBL] [Abstract][Full Text] [Related]  

  • 53. In Situ shRNA Synthesis on DNA-Polylactide Nanoparticles to Treat Multidrug Resistant Breast Cancer.
    Ni Q; Zhang F; Zhang Y; Zhu G; Wang Z; Teng Z; Wang C; Yung BC; Niu G; Lu G; Zhang L; Chen X
    Adv Mater; 2018 Mar; 30(10):. PubMed ID: 29333658
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Recent advances in drug delivery systems for targeting cancer stem cells.
    Duan H; Liu Y; Gao Z; Huang W
    Acta Pharm Sin B; 2021 Jan; 11(1):55-70. PubMed ID: 33532180
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Large-scale manufacturing of GMP-compliant anti-EGFR targeted nanocarriers: production of doxorubicin-loaded anti-EGFR-immunoliposomes for a first-in-man clinical trial.
    Wicki A; Ritschard R; Loesch U; Deuster S; Rochlitz C; Mamot C
    Int J Pharm; 2015 Apr; 484(1-2):8-15. PubMed ID: 25701632
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Possibilities of poly(D,L-lactide-co-glycolide) in the formulation of nanomedicines against cancer.
    Holgado MA; Alvarez-Fuentes J; Fernández-Arévalo M; Arias JL
    Curr Drug Targets; 2011 Jul; 12(8):1096-111. PubMed ID: 21443478
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Actively targeted nanomedicines for precision cancer therapy: Concept, construction, challenges and clinical translation.
    Gu W; Meng F; Haag R; Zhong Z
    J Control Release; 2021 Jan; 329():676-695. PubMed ID: 33022328
    [TBL] [Abstract][Full Text] [Related]  

  • 58. DePEGylation strategies to increase cancer nanomedicine efficacy.
    Kong L; Campbell F; Kros A
    Nanoscale Horiz; 2019 Mar; 4(2):378-387. PubMed ID: 32254090
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Anticancer polymeric nanomedicine bearing synergistic drug combination is superior to a mixture of individually-conjugated drugs.
    Markovsky E; Baabur-Cohen H; Satchi-Fainaro R
    J Control Release; 2014 Aug; 187():145-57. PubMed ID: 24862318
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Modulating angiogenesis with integrin-targeted nanomedicines.
    Duro-Castano A; Gallon E; Decker C; Vicent MJ
    Adv Drug Deliv Rev; 2017 Sep; 119():101-119. PubMed ID: 28502767
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 65.