These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

229 related articles for article (PubMed ID: 24018536)

  • 1. Laplacian dynamics on general graphs.
    Mirzaev I; Gunawardena J
    Bull Math Biol; 2013 Nov; 75(11):2118-49. PubMed ID: 24018536
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Laplacian Dynamics with Synthesis and Degradation.
    Mirzaev I; Bortz DM
    Bull Math Biol; 2015 Jun; 77(6):1013-45. PubMed ID: 25795319
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Stochastic cooperativity in non-linear dynamics of genetic regulatory networks.
    Rosenfeld S
    Math Biosci; 2007 Nov; 210(1):121-42. PubMed ID: 17617426
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Equilibrium solutions for microscopic stochastic systems in population dynamics.
    Lachowicz M; Ryabukha T
    Math Biosci Eng; 2013 Jun; 10(3):777-86. PubMed ID: 23906149
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The linear framework: using graph theory to reveal the algebra and thermodynamics of biomolecular systems.
    Nam KM; Martinez-Corral R; Gunawardena J
    Interface Focus; 2022 Aug; 12(4):20220013. PubMed ID: 35860006
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A linear framework for time-scale separation in nonlinear biochemical systems.
    Gunawardena J
    PLoS One; 2012; 7(5):e36321. PubMed ID: 22606254
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Stochastic approach to molecular interactions and computational theory of metabolic and genetic regulations.
    Kimura H; Okano H; Tanaka RJ
    J Theor Biol; 2007 Oct; 248(4):590-607. PubMed ID: 17688887
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Stochastic reduction method for biological chemical kinetics using time-scale separation.
    Pahlajani CD; Atzberger PJ; Khammash M
    J Theor Biol; 2011 Mar; 272(1):96-112. PubMed ID: 21126524
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An effective rate equation approach to reaction kinetics in small volumes: theory and application to biochemical reactions in nonequilibrium steady-state conditions.
    Grima R
    J Chem Phys; 2010 Jul; 133(3):035101. PubMed ID: 20649359
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The chemical master equation approach to nonequilibrium steady-state of open biochemical systems: linear single-molecule enzyme kinetics and nonlinear biochemical reaction networks.
    Qian H; Bishop LM
    Int J Mol Sci; 2010 Sep; 11(9):3472-500. PubMed ID: 20957107
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Beyond the chemical master equation: Stochastic chemical kinetics coupled with auxiliary processes.
    Lunz D; Batt G; Ruess J; Bonnans JF
    PLoS Comput Biol; 2021 Jul; 17(7):e1009214. PubMed ID: 34319979
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Efficient manipulation and generation of Kirchhoff polynomials for the analysis of non-equilibrium biochemical reaction networks.
    Yordanov P; Stelling J
    J R Soc Interface; 2020 Apr; 17(165):20190828. PubMed ID: 32316881
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Solving the chemical master equation by a fast adaptive finite state projection based on the stochastic simulation algorithm.
    Sidje RB; Vo HD
    Math Biosci; 2015 Nov; 269():10-6. PubMed ID: 26319118
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Stochastic fluctuations in gene expression far from equilibrium: Omega expansion and linear noise approximation.
    Tao Y; Jia Y; Dewey TG
    J Chem Phys; 2005 Mar; 122(12):124108. PubMed ID: 15836370
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Synchronized dynamics and non-equilibrium steady states in a stochastic yeast cell-cycle network.
    Ge H; Qian H; Qian M
    Math Biosci; 2008 Jan; 211(1):132-52. PubMed ID: 18048065
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Automatic simplification of systems of reaction-diffusion equations by a posteriori analysis.
    Maybank PJ; Whiteley JP
    Math Biosci; 2014 Feb; 248():146-57. PubMed ID: 24418010
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Limit theorems for generalized density-dependent Markov chains and bursty stochastic gene regulatory networks.
    Chen X; Jia C
    J Math Biol; 2020 Mar; 80(4):959-994. PubMed ID: 31754779
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The fluctuation-dissipation theorem for stochastic kinetics--implications on genetic regulations.
    Yan CC; Hsu CP
    J Chem Phys; 2013 Dec; 139(22):224109. PubMed ID: 24329058
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Transient dynamics of reduced-order models of genetic regulatory networks.
    Pal R; Bhattacharya S
    IEEE/ACM Trans Comput Biol Bioinform; 2012; 9(4):1230-44. PubMed ID: 22411891
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An equation-free probabilistic steady-state approximation: dynamic application to the stochastic simulation of biochemical reaction networks.
    Salis H; Kaznessis YN
    J Chem Phys; 2005 Dec; 123(21):214106. PubMed ID: 16356038
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.