These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 24018847)

  • 1. Effect of the addition of zero valent iron (Fe(0)) on the batch biological sulphate reduction using grass cellulose as carbon source.
    Mulopo J; Schaefer L
    Appl Biochem Biotechnol; 2013 Dec; 171(8):2020-9. PubMed ID: 24018847
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The relationships between sulphate reduction and COD/VFA utilisation using grass cellulose as carbon and energy sources.
    Mulopo J; Greben H; Sigama J; Radebe V; Mashego M; Burke L
    Appl Biochem Biotechnol; 2011 Feb; 163(3):393-403. PubMed ID: 20661782
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biological treatment of highly contaminated acid mine drainage in batch reactors: Long-term treatment and reactive mixture characterization.
    Neculita CM; Zagury GJ
    J Hazard Mater; 2008 Sep; 157(2-3):358-66. PubMed ID: 18281152
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Upflow anaerobic sludge blanket reactor--a review.
    Bal AS; Dhagat NN
    Indian J Environ Health; 2001 Apr; 43(2):1-82. PubMed ID: 12397675
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Removal of sulphates acidity and iron from acid mine drainage in a bench scale biochemical treatment system.
    Prasad D; Henry JG
    Environ Technol; 2009 Feb; 30(2):151-60. PubMed ID: 19278156
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bioaugmented sulfate reduction using enriched anaerobic microflora in the presence of zero valent iron.
    Xin Y; Yong K; Duujong L; Ying F
    Chemosphere; 2008 Nov; 73(9):1436-41. PubMed ID: 18840389
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The effect of adapting cellulose degrading microorganisms to 25 degrees C providing energy sources for biological sulphate removal.
    Greben H; Sigama J
    Water Sci Technol; 2009; 60(7):1711-9. PubMed ID: 19809134
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Anaerobic treatment for C and S removal in "zero-discharge" paper mills: effects of process design on S removal efficiencies.
    van Lier JB; Lens PN; Pol LW
    Water Sci Technol; 2001; 44(4):189-95. PubMed ID: 11575084
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Tannery effluent as a carbon source for biological sulphate reduction.
    Boshoff G; Duncan J; Rose PD
    Water Res; 2004 Jun; 38(11):2651-8. PubMed ID: 15207595
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fe(II) oxidation during acid mine drainage neutralization in a pilot-scale Sequencing Batch Reactor.
    Zvimba JN; Mathye M; Vadapalli VR; Swanepoel H; Bologo L
    Water Sci Technol; 2013; 68(6):1406-11. PubMed ID: 24056441
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Wine wastes as carbon source for biological treatment of acid mine drainage.
    Costa MC; Santos ES; Barros RJ; Pires C; Martins M
    Chemosphere; 2009 May; 75(6):831-6. PubMed ID: 19201010
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Degradation of a model azo dye in submerged anaerobic membrane bioreactor (SAMBR) operated with powdered activated carbon (PAC).
    Baêta BE; Luna HJ; Sanson AL; Silva SQ; Aquino SF
    J Environ Manage; 2013 Oct; 128():462-70. PubMed ID: 23810998
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Acid mine drainage neutralization in a pilot sequencing batch reactor using limestone from a paper and pulp industry.
    Vadapalli VR; Zvimba JN; Mathye M; Fischer H; Bologo L
    Environ Technol; 2015; 36(19):2515-23. PubMed ID: 25846482
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterization and reactivity assessment of organic substrates for sulphate-reducing bacteria in acid mine drainage treatment.
    Zagury GJ; Kulnieks VI; Neculita CM
    Chemosphere; 2006 Aug; 64(6):944-54. PubMed ID: 16487566
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Removal of sulphate, COD and Cr(VI) in simulated and real wastewater by sulphate reducing bacteria enrichment in small bioreactor and FTIR study.
    Singh R; Kumar A; Kirrolia A; Kumar R; Yadav N; Bishnoi NR; Lohchab RK
    Bioresour Technol; 2011 Jan; 102(2):677-82. PubMed ID: 20884204
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of the liquid upflow velocity on thermophilic sulphate reduction in acidifying granular sludge reactors.
    Lens PN; Korthout D; van Lier JB; Hulshoff Pol LW; Lettinga G
    Environ Technol; 2001 Feb; 22(2):183-93. PubMed ID: 11349377
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Treatment of carbofuran-bearing synthetic wastewater using UASB process.
    Madhubabu S; Kumar M; Philip L; Venkobachar C
    J Environ Sci Health B; 2007 Feb; 42(2):189-99. PubMed ID: 17365334
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of alkalinity on the performance of a simulated landfill bioreactor digesting organic solid wastes.
    Ağdağ ON; Sponza DT
    Chemosphere; 2005 May; 59(6):871-9. PubMed ID: 15811416
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sulfidogenic biotreatment of synthetic acid mine drainage and sulfide oxidation in anaerobic baffled reactor.
    Bekmezci OK; Ucar D; Kaksonen AH; Sahinkaya E
    J Hazard Mater; 2011 May; 189(3):670-6. PubMed ID: 21320747
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Silage supports sulfate reduction in the treatment of metals- and sulfate-containing waste waters.
    Wakeman KD; Erving L; Riekkola-Vanhanen ML; Puhakka JA
    Water Res; 2010 Sep; 44(17):4932-9. PubMed ID: 20708212
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.