These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 24018847)

  • 21. Sulphate-reducing laboratory-scale high-rate anaerobic reactors for treatment of metal- and sulphate-containing mine wastewater.
    Tuppurainen KO; Väisänen AO; Rintala JA
    Environ Technol; 2002 Jun; 23(6):599-608. PubMed ID: 12118612
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Sulfate and metal removal in bioreactors treating acid mine drainage dominated with iron and aluminum.
    McCauley CA; O'Sullivan AD; Milke MW; Weber PA; Trumm DA
    Water Res; 2009 Mar; 43(4):961-70. PubMed ID: 19070349
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Removal of organic carbon, nitrogen and phosphorus in sequential batch reactors integrating the aerobic/anaerobic processes.
    Callado NH; Foresti E
    Water Sci Technol; 2001; 44(4):263-70. PubMed ID: 11575092
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Anaerobic treatment of atrazine bearing wastewater.
    Ghosh PK; Philip L; Bandyopadhyay M
    J Environ Sci Health B; 2001 May; 36(3):301-16. PubMed ID: 11411853
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Microbial reduction of perchlorate with zero-valent iron.
    Son A; Lee J; Chiu PC; Kim BJ; Cha DK
    Water Res; 2006 Jun; 40(10):2027-2032. PubMed ID: 16697026
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Comparative study of cellulose waste versus organic waste as substrate in a sulfate reducing bioreactor.
    Choudhary RP; Sheoran AS
    Bioresour Technol; 2011 Mar; 102(6):4319-24. PubMed ID: 20926292
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Down-flow fixed-structured bed reactor: An innovative reactor configuration applied to acid mine drainage treatment and metal recovery.
    Godoi LAG; Foresti E; Damianovic MHRZ
    J Environ Manage; 2017 Jul; 197():597-604. PubMed ID: 28431372
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Evaluation of fine organic mixtures for treatment of acid mine drainage in sulfidogenic reactors.
    Pérez N; Schwarz A; de Bruijn J
    Water Sci Technol; 2018 Nov; 78(8):1715-1725. PubMed ID: 30500795
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Microbial sulphate reduction during anaerobic digestion: EGSB process performance and potential for nitrite suppression of SRB activity.
    O'Reilly C; Colleran E
    Water Sci Technol; 2005; 52(1-2):371-6. PubMed ID: 16180452
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Sulfidogenic fluidized bed treatment of real acid mine drainage water.
    Sahinkaya E; Gunes FM; Ucar D; Kaksonen AH
    Bioresour Technol; 2011 Jan; 102(2):683-9. PubMed ID: 20832297
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Anaerobic acidification of a synthetic wastewater in batch reactors at 55 degrees C.
    Yu HQ; Fang HH
    Water Sci Technol; 2002; 46(11-12):153-7. PubMed ID: 12523747
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Performance evaluation of various aerobic biological systems for the treatment of domestic wastewater at low temperatures.
    Sundaresan N; Philip L
    Water Sci Technol; 2008; 58(4):819-30. PubMed ID: 18776617
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Anaerobic degradation of carbon capture reclaimer MEA waste.
    Wang S; Hovland J; Bakke R
    Water Sci Technol; 2013; 67(11):2549-59. PubMed ID: 23752388
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Low temperature anaerobic biotreatment of priority pollutants.
    McKeown RM; Collins G; Chinalia FA; Mahony T; O'Flaherty V
    Water Sci Technol; 2008; 57(4):499-503. PubMed ID: 18359987
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Using excess sludge as carbon source for enhanced nitrogen removal and sludge reduction with hydrolysis technology.
    Gao YQ; Peng YZ; Zhang JY; Wang JL; Ye L
    Water Sci Technol; 2010; 62(7):1536-43. PubMed ID: 20935370
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Assessment of nitrogen and phosphorus removal in an intermittently aerated sequencing batch reactor (IASBR) and a sequencing batch reactor (SBR).
    Pan M; Chen T; Hu Z; Zhan X
    Water Sci Technol; 2013; 68(2):400-5. PubMed ID: 23863434
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Use of volatile fatty acids from an acid-phase digester for denitrification.
    Elefsiniotis P; Wareham DG; Smith MO
    J Biotechnol; 2004 Nov; 114(3):289-97. PubMed ID: 15522438
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Biological inverse fluidized-bed reactors for the treatment of low pH- and sulphate-containing wastewaters under different COD/SO4(2-) conditions.
    Papirio S; Esposito G; Pirozzi F
    Environ Technol; 2013; 34(9-12):1141-9. PubMed ID: 24191446
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Performance of a down-flow fluidized bed reactor under sulfate reduction conditions using volatile fatty acids as electron donors.
    Celis-García LB; Razo-Flores E; Monroy O
    Biotechnol Bioeng; 2007 Jul; 97(4):771-9. PubMed ID: 17154309
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Removal of arsenic from water by zero-valent iron.
    Bang S; Korfiatis GP; Meng X
    J Hazard Mater; 2005 May; 121(1-3):61-7. PubMed ID: 15885407
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.