These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 24018894)

  • 1. Super-hydrophobic yolk-shell nanostructure with enhanced catalytic performance in the reduction of hydrophobic nitroaromatic compounds.
    Shi S; Wang M; Chen C; Gao J; Ma H; Ma J; Xu J
    Chem Commun (Camb); 2013 Oct; 49(83):9591-3. PubMed ID: 24018894
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Highly chemo- and regioselective reduction of aromatic nitro compounds using the system silane/oxo-rhenium complexes.
    de Noronha RG; Romão CC; Fernandes AC
    J Org Chem; 2009 Sep; 74(18):6960-4. PubMed ID: 19685891
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Pd-catalyzed silicon hydride reductions of aromatic and aliphatic nitro groups.
    Rahaim RJ; Maleczka RE
    Org Lett; 2005 Oct; 7(22):5087-90. PubMed ID: 16235964
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A quantum chemical based toxicity study of estimated reduction potential and hydrophobicity in series of nitroaromatic compounds.
    Gooch A; Sizochenko N; Sviatenko L; Gorb L; Leszczynski J
    SAR QSAR Environ Res; 2017 Feb; 28(2):133-150. PubMed ID: 28235392
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In situ production of silver nanoparticles on an aldehyde-equipped conjugated porous polymer and subsequent heterogeneous reduction of aromatic nitro groups at room temperature.
    Liu J; Cui J; Vilela F; He J; Zeller M; Hunter AD; Xu Z
    Chem Commun (Camb); 2015 Aug; 51(61):12197-200. PubMed ID: 26134362
    [TBL] [Abstract][Full Text] [Related]  

  • 6. One-pot synthesis of M (M = Ag, Au)@SiO2 yolk-shell structures via an organosilane-assisted method: preparation, formation mechanism and application in heterogeneous catalysis.
    Chen Y; Wang Q; Wang T
    Dalton Trans; 2015 May; 44(19):8867-75. PubMed ID: 25869174
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Au/Au@polythiophene core/shell nanospheres for heterogeneous catalysis of nitroarenes.
    Shin HS; Huh S
    ACS Appl Mater Interfaces; 2012 Nov; 4(11):6324-31. PubMed ID: 23106495
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Efficient and highly selective iron-catalyzed reduction of nitroarenes.
    Jagadeesh RV; Wienhöfer G; Westerhaus FA; Surkus AE; Pohl MM; Junge H; Junge K; Beller M
    Chem Commun (Camb); 2011 Oct; 47(39):10972-4. PubMed ID: 21897952
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Controllable synthesis and catalysis application of hierarchical PS/Au core-shell nanocomposites.
    Zhou J; Ren F; Wu W; Zhang S; Xiao X; Xu J; Jiang C
    J Colloid Interface Sci; 2012 Dec; 387(1):47-55. PubMed ID: 22939252
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Highly selective reduction of nitroarenes by iron(0) nanoparticles in water.
    Dey R; Mukherjee N; Ahammed S; Ranu BC
    Chem Commun (Camb); 2012 Aug; 48(64):7982-4. PubMed ID: 22531391
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A method to calculate the one-electron reduction potentials for nitroaromatic compounds based on gas-phase quantum mechanics.
    Phillips KL; Sandler SI; Chiu PC
    J Comput Chem; 2011 Jan; 32(2):226-39. PubMed ID: 20662081
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A highly active nano-palladium catalyst for the preparation of aromatic azos under mild conditions.
    Hu L; Cao X; Shi L; Qi F; Guo Z; Lu J; Gu H
    Org Lett; 2011 Oct; 13(20):5640-3. PubMed ID: 21939197
    [TBL] [Abstract][Full Text] [Related]  

  • 13. General and selective iron-catalyzed transfer hydrogenation of nitroarenes without base.
    Wienhöfer G; Sorribes I; Boddien A; Westerhaus F; Junge K; Junge H; Llusar R; Beller M
    J Am Chem Soc; 2011 Aug; 133(32):12875-9. PubMed ID: 21740024
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Catalytic oxidation of silanes by carbon nanotube-gold nanohybrids.
    John J; Gravel E; Hagège A; Li H; Gacoin T; Doris E
    Angew Chem Int Ed Engl; 2011 Aug; 50(33):7533-6. PubMed ID: 21732506
    [No Abstract]   [Full Text] [Related]  

  • 15. Highly efficient and selective photocatalytic reduction of nitroarenes using the Ni2P/CdS catalyst under visible-light irradiation.
    Gao WZ; Xu Y; Chen Y; Fu WF
    Chem Commun (Camb); 2015 Aug; 51(67):13217-20. PubMed ID: 26193992
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Preparation of symmetric and asymmetric aromatic azo compounds from aromatic amines or nitro compounds using supported gold catalysts.
    Grirrane A; Corma A; Garcia H
    Nat Protoc; 2010 Mar; 5(3):429-38. PubMed ID: 20203657
    [TBL] [Abstract][Full Text] [Related]  

  • 17. New method for calculating densities of nitroaromatic explosive compounds.
    Keshavarz MH
    J Hazard Mater; 2007 Jun; 145(1-2):263-9. PubMed ID: 17174024
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A simple correlation for predicting heats of fusion of nitroaromatic carbocyclic energetic compounds.
    Keshavarz MH
    J Hazard Mater; 2008 Jan; 150(2):387-93. PubMed ID: 17548148
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A yolk-shell nanoreactor with a basic core and an acidic shell for cascade reactions.
    Yang Y; Liu X; Li X; Zhao J; Bai S; Liu J; Yang Q
    Angew Chem Int Ed Engl; 2012 Sep; 51(36):9164-8. PubMed ID: 22865743
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Novel CeO2 yolk-shell structures loaded with tiny Au nanoparticles for superior catalytic reduction of p-nitrophenol.
    Fan CM; Zhang LF; Wang SS; Wang DH; Lu LQ; Xu AW
    Nanoscale; 2012 Nov; 4(21):6835-40. PubMed ID: 23023220
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.