These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

272 related articles for article (PubMed ID: 24019504)

  • 1. Micron-scale coherence in interphase chromatin dynamics.
    Zidovska A; Weitz DA; Mitchison TJ
    Proc Natl Acad Sci U S A; 2013 Sep; 110(39):15555-60. PubMed ID: 24019504
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Extensile motor activity drives coherent motions in a model of interphase chromatin.
    Saintillan D; Shelley MJ; Zidovska A
    Proc Natl Acad Sci U S A; 2018 Nov; 115(45):11442-11447. PubMed ID: 30348795
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The self-stirred genome: large-scale chromatin dynamics, its biophysical origins and implications.
    Zidovska A
    Curr Opin Genet Dev; 2020 Apr; 61():83-90. PubMed ID: 32497955
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Multiple regimes of constrained chromosome motion are regulated in the interphase Drosophila nucleus.
    Vazquez J; Belmont AS; Sedat JW
    Curr Biol; 2001 Aug; 11(16):1227-39. PubMed ID: 11525737
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Spatial relationship between transcription sites and chromosome territories.
    Verschure PJ; van Der Kraan I; Manders EM; van Driel R
    J Cell Biol; 1999 Oct; 147(1):13-24. PubMed ID: 10508851
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Chromatin dynamics during interphase explored by single-particle tracking.
    Levi V; Gratton E
    Chromosome Res; 2008; 16(3):439-49. PubMed ID: 18461483
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Simulation of different three-dimensional polymer models of interphase chromosomes compared to experiments-an evaluation and review framework of the 3D genome organization.
    Knoch TA
    Semin Cell Dev Biol; 2019 Jun; 90():19-42. PubMed ID: 30125668
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Single-chromosome dynamics reveals locus-dependent dynamics and chromosome territory orientation.
    Chung YC; Bisht M; Thuma J; Tu LC
    J Cell Sci; 2023 Feb; 136(4):. PubMed ID: 36718642
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Chromatin as an active polymeric material.
    Menon GI
    Emerg Top Life Sci; 2020 Sep; 4(2):111-118. PubMed ID: 32830859
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Large-scale chromatin organization and the localization of proteins involved in gene expression in human cells.
    Verschure PJ; Van Der Kraan I; Enserink JM; Moné MJ; Manders EM; Van Driel R
    J Histochem Cytochem; 2002 Oct; 50(10):1303-12. PubMed ID: 12364563
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The 10-nm chromatin fiber and its relationship to interphase chromosome organization.
    Hansen JC; Connolly M; McDonald CJ; Pan A; Pryamkova A; Ray K; Seidel E; Tamura S; Rogge R; Maeshima K
    Biochem Soc Trans; 2018 Feb; 46(1):67-76. PubMed ID: 29263138
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Trichostatin A-induced histone acetylation causes decondensation of interphase chromatin.
    Tóth KF; Knoch TA; Wachsmuth M; Frank-Stöhr M; Stöhr M; Bacher CP; Müller G; Rippe K
    J Cell Sci; 2004 Aug; 117(Pt 18):4277-87. PubMed ID: 15292402
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Chromatin dynamics in interphase nuclei and its implications for nuclear structure.
    Abney JR; Cutler B; Fillbach ML; Axelrod D; Scalettar BA
    J Cell Biol; 1997 Jun; 137(7):1459-68. PubMed ID: 9199163
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Chromosome dynamics in the yeast interphase nucleus.
    Heun P; Laroche T; Shimada K; Furrer P; Gasser SM
    Science; 2001 Dec; 294(5549):2181-6. PubMed ID: 11739961
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The impact of mitotic versus interphase chromatin architecture on the molecular flow of EGFP by pair correlation analysis.
    Hinde E; Cardarelli F; Digman MA; Kershner A; Kimble J; Gratton E
    Biophys J; 2011 Apr; 100(7):1829-36. PubMed ID: 21463597
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Interphase Chromatin Undergoes a Local Sol-Gel Transition upon Cell Differentiation.
    Eshghi I; Eaton JA; Zidovska A
    Phys Rev Lett; 2021 Jun; 126(22):228101. PubMed ID: 34152157
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Large-scale chromatin fibers of living cells display a discontinuous functional organization.
    Sadoni N; Sullivan KF; Weinzierl P; Stelzer EH; Zink D
    Chromosoma; 2001 Apr; 110(1):39-51. PubMed ID: 11398975
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Chromosomes without a 30-nm chromatin fiber.
    Joti Y; Hikima T; Nishino Y; Kamada F; Hihara S; Takata H; Ishikawa T; Maeshima K
    Nucleus; 2012; 3(5):404-10. PubMed ID: 22825571
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Insights into interphase large-scale chromatin structure from analysis of engineered chromosome regions.
    Belmont AS; Hu Y; Sinclair PB; Wu W; Bian Q; Kireev I
    Cold Spring Harb Symp Quant Biol; 2010; 75():453-60. PubMed ID: 21467143
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Interphase chromosomes undergo constrained diffusional motion in living cells.
    Marshall WF; Straight A; Marko JF; Swedlow J; Dernburg A; Belmont A; Murray AW; Agard DA; Sedat JW
    Curr Biol; 1997 Dec; 7(12):930-9. PubMed ID: 9382846
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.