BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

264 related articles for article (PubMed ID: 24019533)

  • 1. Phosphatidylserine flipping enhances membrane curvature and negative charge required for vesicular transport.
    Xu P; Baldridge RD; Chi RJ; Burd CG; Graham TR
    J Cell Biol; 2013 Sep; 202(6):875-86. PubMed ID: 24019533
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Drs2p-coupled aminophospholipid translocase activity in yeast Golgi membranes and relationship to in vivo function.
    Natarajan P; Wang J; Hua Z; Graham TR
    Proc Natl Acad Sci U S A; 2004 Jul; 101(29):10614-9. PubMed ID: 15249668
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Two-gate mechanism for phospholipid selection and transport by type IV P-type ATPases.
    Baldridge RD; Graham TR
    Proc Natl Acad Sci U S A; 2013 Jan; 110(5):E358-67. PubMed ID: 23302692
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Identification of a second amphipathic lipid-packing sensor-like motif that contributes to Gcs1p function in the early endosome-to-TGN pathway.
    Zendeh-boodi Z; Yamamoto T; Sakane H; Tanaka K
    J Biochem; 2013 Jun; 153(6):573-87. PubMed ID: 23564908
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The functional relationship between the Cdc50p-Drs2p putative aminophospholipid translocase and the Arf GAP Gcs1p in vesicle formation in the retrieval pathway from yeast early endosomes to the TGN.
    Sakane H; Yamamoto T; Tanaka K
    Cell Struct Funct; 2006; 31(2):87-108. PubMed ID: 17062999
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identification of residues defining phospholipid flippase substrate specificity of type IV P-type ATPases.
    Baldridge RD; Graham TR
    Proc Natl Acad Sci U S A; 2012 Feb; 109(6):E290-8. PubMed ID: 22308393
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Type IV P-type ATPases distinguish mono- versus diacyl phosphatidylserine using a cytofacial exit gate in the membrane domain.
    Baldridge RD; Xu P; Graham TR
    J Biol Chem; 2013 Jul; 288(27):19516-27. PubMed ID: 23709217
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Phosphatidylserine translocation at the yeast trans-Golgi network regulates protein sorting into exocytic vesicles.
    Hankins HM; Sere YY; Diab NS; Menon AK; Graham TR
    Mol Biol Cell; 2015 Dec; 26(25):4674-85. PubMed ID: 26466678
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The yeast Arf GTPase-activating protein Age1 is regulated by phospholipase D for post-Golgi vesicular transport.
    Benjamin JJ; Poon PP; Lewis SM; Auger A; Wong TA; Singer RA; Johnston GC
    J Biol Chem; 2011 Feb; 286(7):5187-96. PubMed ID: 21135091
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cdc50p, a protein required for polarized growth, associates with the Drs2p P-type ATPase implicated in phospholipid translocation in Saccharomyces cerevisiae.
    Saito K; Fujimura-Kamada K; Furuta N; Kato U; Umeda M; Tanaka K
    Mol Biol Cell; 2004 Jul; 15(7):3418-32. PubMed ID: 15090616
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The PQ-loop protein Any1 segregates Drs2 and Neo1 functions required for viability and plasma membrane phospholipid asymmetry.
    Takar M; Huang Y; Graham TR
    J Lipid Res; 2019 May; 60(5):1032-1042. PubMed ID: 30824614
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Phospholipid flippases Lem3p-Dnf1p and Lem3p-Dnf2p are involved in the sorting of the tryptophan permease Tat2p in yeast.
    Hachiro T; Yamamoto T; Nakano K; Tanaka K
    J Biol Chem; 2013 Feb; 288(5):3594-608. PubMed ID: 23250744
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Membrane metabolism mediated by Sec14 family members influences Arf GTPase activating protein activity for transport from the trans-Golgi.
    Wong TA; Fairn GD; Poon PP; Shmulevitz M; McMaster CR; Singer RA; Johnston GC
    Proc Natl Acad Sci U S A; 2005 Sep; 102(36):12777-82. PubMed ID: 16126894
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Control of protein and sterol trafficking by antagonistic activities of a type IV P-type ATPase and oxysterol binding protein homologue.
    Muthusamy BP; Raychaudhuri S; Natarajan P; Abe F; Liu K; Prinz WA; Graham TR
    Mol Biol Cell; 2009 Jun; 20(12):2920-31. PubMed ID: 19403696
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Conserved mechanism of phospholipid substrate recognition by the P4-ATPase Neo1 from Saccharomyces cerevisiae.
    Huang Y; Takar M; Best JT; Graham TR
    Biochim Biophys Acta Mol Cell Biol Lipids; 2020 Feb; 1865(2):158581. PubMed ID: 31786280
    [TBL] [Abstract][Full Text] [Related]  

  • 16. P4-ATPase requirement for AP-1/clathrin function in protein transport from the trans-Golgi network and early endosomes.
    Liu K; Surendhran K; Nothwehr SF; Graham TR
    Mol Biol Cell; 2008 Aug; 19(8):3526-35. PubMed ID: 18508916
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Regulation of a Golgi flippase by phosphoinositides and an ArfGEF.
    Natarajan P; Liu K; Patil DV; Sciorra VA; Jackson CL; Graham TR
    Nat Cell Biol; 2009 Dec; 11(12):1421-6. PubMed ID: 19898464
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Interaction of the phospholipid flippase Drs2p with the F-box protein Rcy1p plays an important role in early endosome to trans-Golgi network vesicle transport in yeast.
    Hanamatsu H; Fujimura-Kamada K; Yamamoto T; Furuta N; Tanaka K
    J Biochem; 2014 Jan; 155(1):51-62. PubMed ID: 24272750
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Role of phosphatidylserine in phospholipid flippase-mediated vesicle transport in Saccharomyces cerevisiae.
    Takeda M; Yamagami K; Tanaka K
    Eukaryot Cell; 2014 Mar; 13(3):363-75. PubMed ID: 24390140
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Roles for the Drs2p-Cdc50p complex in protein transport and phosphatidylserine asymmetry of the yeast plasma membrane.
    Chen S; Wang J; Muthusamy BP; Liu K; Zare S; Andersen RJ; Graham TR
    Traffic; 2006 Nov; 7(11):1503-17. PubMed ID: 16956384
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.