These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 24019819)

  • 41. Modeling of adipose/blood partition coefficient for environmental chemicals.
    Papadaki KC; Karakitsios SP; Sarigiannis DA
    Food Chem Toxicol; 2017 Dec; 110():274-285. PubMed ID: 29111282
    [TBL] [Abstract][Full Text] [Related]  

  • 42. A QSAR study of some cyclobutenediones as CCR1 antagonists by artificial neural networks based on principal component analysis.
    Shahlaei M; Fassihi A; Saghaie L; Arkan E; Pourhossein A
    Daru; 2011; 19(5):376-84. PubMed ID: 22615684
    [TBL] [Abstract][Full Text] [Related]  

  • 43. An efficient piecewise linear model for predicting activity of caspase-3 inhibitors.
    Firoozpour L; Sadatnezhad K; Dehghani S; Pourbasheer E; Foroumadi A; Shafiee A; Amanlou M
    Daru; 2012 Sep; 20(1):31. PubMed ID: 23351435
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Prediction of gas chromatographic retention indices of some amino acids and carboxylic acids from their structural descriptors.
    Fatemi MH; Elyasi M
    J Sep Sci; 2011 Nov; 34(22):3216-20. PubMed ID: 22012944
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Prediction of the chromatographic hydrophobicity index with immobilized artificial membrane chromatography using simple molecular descriptors and artificial neural networks.
    Ciura K; Kovačević S; Pastewska M; Kapica H; Kornela M; Sawicki W
    J Chromatogr A; 2021 Dec; 1660():462666. PubMed ID: 34781046
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Predicting equilibrium vapour pressure isotope effects by using artificial neural networks or multi-linear regression - A quantitative structure property relationship approach.
    Parinet J; Julien M; Nun P; Robins RJ; Remaud G; Höhener P
    Chemosphere; 2015 Sep; 134():521-7. PubMed ID: 25559176
    [TBL] [Abstract][Full Text] [Related]  

  • 47. In silico toxicity evaluation of dioxins using structure-activity relationship (SAR) and two-dimensional quantitative structure-activity relationship (2D-QSAR).
    Yang H; Du Z; Lv WJ; Zhang XY; Zhai HL
    Arch Toxicol; 2019 Nov; 93(11):3207-3218. PubMed ID: 31552475
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Prediction of intrinsic solubility of generic drugs using MLR, ANN and SVM analyses.
    Louis B; Agrawal VK; Khadikar PV
    Eur J Med Chem; 2010 Sep; 45(9):4018-25. PubMed ID: 20584562
    [TBL] [Abstract][Full Text] [Related]  

  • 49. QSAR study of heparanase inhibitors activity using artificial neural networks and Levenberg-Marquardt algorithm.
    Jalali-Heravi M; Asadollahi-Baboli M; Shahbazikhah P
    Eur J Med Chem; 2008 Mar; 43(3):548-56. PubMed ID: 17602800
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Design of potential anti-tumor PARP-1 inhibitors by QSAR and molecular modeling studies.
    Abbasi-Radmoghaddam Z; Riahi S; Gharaghani S; Mohammadi-Khanaposhtanai M
    Mol Divers; 2021 Feb; 25(1):263-277. PubMed ID: 32140890
    [TBL] [Abstract][Full Text] [Related]  

  • 51. QSAR modeling for quinoxaline derivatives using genetic algorithm and simulated annealing based feature selection.
    Ghosh P; Bagchi MC
    Curr Med Chem; 2009; 16(30):4032-48. PubMed ID: 19747124
    [TBL] [Abstract][Full Text] [Related]  

  • 52. A quantitative structure- property relationship of gas chromatographic/mass spectrometric retention data of 85 volatile organic compounds as air pollutant materials by multivariate methods.
    Sarkhosh M; Ghasemi JB; Ayati M
    Chem Cent J; 2012 May; 6 Suppl 2(Suppl 2):S4. PubMed ID: 22594439
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Application of genetic algorithm-kernel partial least square as a novel nonlinear feature selection method: activity of carbonic anhydrase II inhibitors.
    Jalali-Heravi M; Kyani A
    Eur J Med Chem; 2007 May; 42(5):649-59. PubMed ID: 17316919
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Comparison of Different 2D and 3D-QSAR Methods on Activity Prediction of Histamine H3 Receptor Antagonists.
    Dastmalchi S; Hamzeh-Mivehroud M; Asadpour-Zeynali K
    Iran J Pharm Res; 2012; 11(1):97-108. PubMed ID: 25317190
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Quantitative structure-retention relationship model for the determination of naratriptan hydrochloride and its impurities based on artificial neural networks coupled with genetic algorithm.
    Mizera M; Krause A; Zalewski P; Skibiński R; Cielecka-Piontek J
    Talanta; 2017 Mar; 164():164-174. PubMed ID: 28107913
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Prediction of p38 map kinase inhibitory activity of 3, 4-dihydropyrido [3, 2-d] pyrimidone derivatives using an expert system based on principal component analysis and least square support vector machine.
    Shahlaei M; Saghaie L
    Res Pharm Sci; 2014; 9(6):471-88. PubMed ID: 26339262
    [TBL] [Abstract][Full Text] [Related]  

  • 57. QSAR modeling of human serum protein binding with several modeling techniques utilizing structure-information representation.
    Votano JR; Parham M; Hall LM; Hall LH; Kier LB; Oloff S; Tropsha A
    J Med Chem; 2006 Nov; 49(24):7169-81. PubMed ID: 17125269
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Quantitative structure-activity relationship study of aromatic inhibitors against rat lens aldose reductase activity using variable selections.
    Jung M; Lee Y; Shim M; Lim E; Lee EJ; Lee HC
    Med Chem; 2013 May; 9(3):410-9. PubMed ID: 22931492
    [TBL] [Abstract][Full Text] [Related]  

  • 59. QSAR studies of bioactivities of 1-(azacyclyl)-3-arylsulfonyl-1H-pyrrolo[2,3-b]pyridines as 5-HT6 receptor ligands using physicochemical descriptors and MLR and ANN-modeling.
    Goodarzi M; Freitas MP; Ghasemi N
    Eur J Med Chem; 2010 Sep; 45(9):3911-5. PubMed ID: 20547432
    [TBL] [Abstract][Full Text] [Related]  

  • 60. QSPR estimation models of normal boiling point and relative liquid density of pure hydrocarbons using MLR and MLP-ANN methods.
    Roubehie Fissa M; Lahiouel Y; Khaouane L; Hanini S
    J Mol Graph Model; 2019 Mar; 87():109-120. PubMed ID: 30537641
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.