These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
93 related articles for article (PubMed ID: 24020257)
1. [Phytic phosphorus and phytase activity in cereal-based infant formulas]. Ojeda A; Villavicencio I; Linares Z Arch Latinoam Nutr; 2012 Dec; 62(4):370-4. PubMed ID: 24020257 [TBL] [Abstract][Full Text] [Related]
2. Phytase-mediated mineral solubilization from cereals under in vitro gastric conditions. Nielsen AV; Meyer AS J Sci Food Agric; 2016 Aug; 96(11):3755-61. PubMed ID: 26678688 [TBL] [Abstract][Full Text] [Related]
3. Response of broiler chickens to microbial phytase supplementation as influenced by dietary phytic acid and non-phytate phosphorous levels. II. Effects on apparent metabolisable energy, nutrient digestibility and nutrient retention. Ravindran V; Cabahug S; Ravindra G; Selle PH; Bryden WL Br Poult Sci; 2000 May; 41(2):193-200. PubMed ID: 10890216 [TBL] [Abstract][Full Text] [Related]
4. Response of broiler chickens to microbial phytase supplementation as influenced by dietary phytic acid and non-phytate phosphorus contents. I. Effects on bird performance and toe ash. Cabahug S; Ravindran V; Selle PH; Bryden WL Br Poult Sci; 1999 Dec; 40(5):660-6. PubMed ID: 10670679 [TBL] [Abstract][Full Text] [Related]
5. Characterisation of European varieties of triticale with special emphasis on the ability of plant phytase to improve phytate phosphorus availability to chickens. Jondreville C; Genthon C; Bouguennec A; Carre B; Nys Y Br Poult Sci; 2007 Dec; 48(6):678-89. PubMed ID: 18085450 [TBL] [Abstract][Full Text] [Related]
6. Degradation of phytic acid in cereal porridges improves iron absorption by human subjects. Hurrell RF; Reddy MB; Juillerat MA; Cook JD Am J Clin Nutr; 2003 May; 77(5):1213-9. PubMed ID: 12716674 [TBL] [Abstract][Full Text] [Related]
7. Bioavailability in infants of iron from infant cereals: effect of dephytinization. Davidsson L; Galan P; Cherouvrier F; Kastenmayer P; Juillerat MA; Hercberg S; Hurrell RF Am J Clin Nutr; 1997 Apr; 65(4):916-20. PubMed ID: 9094872 [TBL] [Abstract][Full Text] [Related]
8. Effect of grain source and exogenous phytase on phosphorus digestibility in dairy cows. Kincaid RL; Garikipati DK; Nennich TD; Harrison JH J Dairy Sci; 2005 Aug; 88(8):2893-902. PubMed ID: 16027204 [TBL] [Abstract][Full Text] [Related]
9. Methodological aspects of measuring phytase activity and phytate phosphorus content in selected cereal grains and digesta and feces of pigs. Shen Y; Yin Y; Chavez ER; Fan MZ J Agric Food Chem; 2005 Feb; 53(4):853-9. PubMed ID: 15712989 [TBL] [Abstract][Full Text] [Related]
10. Phytic acid degradation as a means of improving iron absorption. Hurrell RF Int J Vitam Nutr Res; 2004 Nov; 74(6):445-52. PubMed ID: 15743020 [TBL] [Abstract][Full Text] [Related]
12. Phytase activity of lactic acid bacteria and their impact on the solubility of minerals from wholemeal wheat bread. Cizeikiene D; Juodeikiene G; Bartkiene E; Damasius J; Paskevicius A Int J Food Sci Nutr; 2015; 66(7):736-42. PubMed ID: 26397032 [TBL] [Abstract][Full Text] [Related]
13. Phosphorus utilization and characterization of excreta from swine fed diets containing a variety of cereal grains balanced for total phosphorus. Leytem AB; Thacker PA J Anim Sci; 2010 May; 88(5):1860-7. PubMed ID: 20118416 [TBL] [Abstract][Full Text] [Related]
14. Effect of phytase from Aspergillus niger on plant growth and mineral assimilation in wheat (Triticum aestivum Linn.) and its potential for use as a soil amendment. Gujar PD; Bhavsar KP; Khire JM J Sci Food Agric; 2013 Jul; 93(9):2242-7. PubMed ID: 23355258 [TBL] [Abstract][Full Text] [Related]
15. Variation in chemical composition and physical characteristics of cereal grains from different genotypes. Rodehutscord M; Rückert C; Maurer HP; Schenkel H; Schipprack W; Bach Knudsen KE; Schollenberger M; Laux M; Eklund M; Siegert W; Mosenthin R Arch Anim Nutr; 2016; 70(2):87-107. PubMed ID: 26829392 [TBL] [Abstract][Full Text] [Related]
16. Dephytinisation with intrinsic wheat phytase and iron fortification significantly increase iron absorption from fonio (Digitaria exilis) meals in West African women. Koréissi-Dembélé Y; Fanou-Fogny N; Moretti D; Schuth S; Dossa RA; Egli I; Zimmermann MB; Brouwer ID PLoS One; 2013; 8(10):e70613. PubMed ID: 24124445 [TBL] [Abstract][Full Text] [Related]
17. Evidence of a Synergistic Effect between Pea Seed and Wheat Grain Endogenous Phytase Activities. Chouchene A; Micard V; Lullien-Pellerin V J Agric Food Chem; 2018 Nov; 66(45):12034-12041. PubMed ID: 30375224 [TBL] [Abstract][Full Text] [Related]
18. Transgenic expression of phytase in wheat endosperm increases bioavailability of iron and zinc in grains. Abid N; Khatoon A; Maqbool A; Irfan M; Bashir A; Asif I; Shahid M; Saeed A; Brinch-Pedersen H; Malik KA Transgenic Res; 2017 Feb; 26(1):109-122. PubMed ID: 27687031 [TBL] [Abstract][Full Text] [Related]
19. The effect of steam-flaked or dry ground corn and supplemental phytic acid on phosphorus partitioning and ruminal phytase activity in lactating cows. Guyton AD; McKinney JM; Knowlton KF J Dairy Sci; 2003 Dec; 86(12):3972-82. PubMed ID: 14740835 [TBL] [Abstract][Full Text] [Related]
20. Effects of microbial phytase, produced by solid-state fermentation, on the performance and nutrient utilisation of broilers fed maize- and wheat-based diets. Wu YB; Ravindran V; Hendriks WH Br Poult Sci; 2003 Dec; 44(5):710-8. PubMed ID: 14965091 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]