These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
180 related articles for article (PubMed ID: 24020269)
21. Pathogenicity bioassays of isolates of Beauveria bassiana on Rhynchophorus ferrugineus. Lo Verde G; Torta L; Mondello V; Caldarella CG; Burruano S; Caleca V Pest Manag Sci; 2015 Feb; 71(2):323-8. PubMed ID: 24990249 [TBL] [Abstract][Full Text] [Related]
22. Characterization of Bacterial Communities Associated with Rhynchophorus ferrugineus Olivier (Coleoptera: Curculionidae) and its Host Phoenix sylvestris. Liao Q; Guo Y; Zhou J; Wan Y; Carballar-Lejarazú R; Sheng L; Zhang F; Wu S; Zou S Curr Microbiol; 2020 Nov; 77(11):3321-3329. PubMed ID: 32939641 [TBL] [Abstract][Full Text] [Related]
23. Comparative virulence of strains of entomopathogenic nematodes for management of eggplant Grey Weevil, Myllocerus subfasciatus Guerin (Coleoptera: Curculionidae). Nagesh M; Kumar NKK; Shylesha AN; Srinivasa N; Javeed S; Thippeswamy R Indian J Exp Biol; 2016 Dec; 54(12):835-42. PubMed ID: 30183180 [TBL] [Abstract][Full Text] [Related]
24. Lower temperature thresholds for oviposition and egg hatching of the red palm weevil, Rhynchophorus ferrugineus (Coleoptera: Curculionidae), in a Mediterranean climate. Dembilio O; Tapia GV; Téllez MM; Jacas JA Bull Entomol Res; 2012 Feb; 102(1):97-102. PubMed ID: 21854685 [TBL] [Abstract][Full Text] [Related]
25. Evaluation of Entomopathogenic Nematodes against Red Palm Weevil, Rehman G; Mamoon-Ur-Rashid M Insects; 2022 Aug; 13(8):. PubMed ID: 36005358 [TBL] [Abstract][Full Text] [Related]
26. Susceptibility of the filbertworm (Cydia latiferreana, Lepidoptera: Tortricidae) and filbert weevil (Curculio occidentalis, Coleoptera: Curculionidae) to entomopathogenic nematodes. Bruck DJ; Walton VM J Invertebr Pathol; 2007 Sep; 96(1):93-6. PubMed ID: 17434523 [TBL] [Abstract][Full Text] [Related]
27. Biological control of the red palm weevil, Rhynchophorus ferrugineus (Olivier) (Coleoptera: Curculionidae) by the parasitoid mite, Rhynchopolipus rhynchophori (Ewing) (Acarina: Podapolipidae). Abdullah MA J Egypt Soc Parasitol; 2009 Aug; 39(2):679-86. PubMed ID: 19795774 [TBL] [Abstract][Full Text] [Related]
28. Pathogenic effect of entomopathogenic nematode-bacterium complexes on terrestrial isopods. Sicard M; Raimond M; Prats O; Lafitte A; Braquart-Varnier C J Invertebr Pathol; 2008 Sep; 99(1):20-7. PubMed ID: 18346756 [TBL] [Abstract][Full Text] [Related]
29. A Review of Entomopathogenic Nematodes as a Biological Control Agent for Red Palm Weevil, Nurashikin-Khairuddin W; Abdul-Hamid SNA; Mansor MS; Bharudin I; Othman Z; Jalinas J Insects; 2022 Feb; 13(3):. PubMed ID: 35323543 [No Abstract] [Full Text] [Related]
30. Influence of cell density and phase variants of bacterial symbionts (Xenorhabdus spp.) on dauer juvenile recovery and development of biocontrol nematodes Steinernema carpocapsae and S. feltiae (Nematoda: Rhabditida). Hirao A; Ehlers RU Appl Microbiol Biotechnol; 2009 Aug; 84(1):77-85. PubMed ID: 19319521 [TBL] [Abstract][Full Text] [Related]
31. Biocontrol potential of entomopathogenic nematodes against the grey maize weevil Tanymecus dilaticollis (Coleoptera: Curculionidae) adults. Toshova TB; Velchev DI; Pilarska DK; Todorov IA; Esteves I; Barth M; Takov DI Biol Futur; 2024 Jun; 75(2):219-233. PubMed ID: 38416361 [TBL] [Abstract][Full Text] [Related]
32. Microbial population dynamics in the hemolymph of Manduca sexta infected with Xenorhabdus nematophila and the entomopathogenic nematode Steinernema carpocapsae. Singh S; Reese JM; Casanova-Torres AM; Goodrich-Blair H; Forst S Appl Environ Microbiol; 2014 Jul; 80(14):4277-85. PubMed ID: 24814780 [TBL] [Abstract][Full Text] [Related]
33. Control of overwintering filbertworm (Lepidoptera: Tortricidae) larvae with Steinernema carpocapsae. Chambers U; Bruck DJ; Olsen J; Walton VM J Econ Entomol; 2010 Apr; 103(2):416-22. PubMed ID: 20429457 [TBL] [Abstract][Full Text] [Related]
34. The prophenoloxidase system in Drosophila participates in the anti-nematode immune response. Cooper D; Wuebbolt C; Heryanto C; Eleftherianos I Mol Immunol; 2019 May; 109():88-98. PubMed ID: 30909122 [TBL] [Abstract][Full Text] [Related]
35. Susceptibility and Immune Defence Mechanisms of Rhynchophorus ferrugineus (Olivier) (Coleoptera: Curculionidae) against Entomopathogenic Fungal Infections. Hussain A; Rizwan-Ul-Haq M; Al-Ayedh H; AlJabr AM Int J Mol Sci; 2016 Sep; 17(9):. PubMed ID: 27618036 [TBL] [Abstract][Full Text] [Related]
36. Characterization of Xenorhabdus isolates from La Rioja (Northern Spain) and virulence with and without their symbiotic entomopathogenic nematodes (Nematoda: Steinernematidae). Campos-Herrera R; Tailliez P; Pagès S; Ginibre N; Gutiérrez C; Boemare NE J Invertebr Pathol; 2009 Oct; 102(2):173-81. PubMed ID: 19682458 [TBL] [Abstract][Full Text] [Related]
37. Entomopathogens (Beauveria bassiana and Steinernema carpocapsae) for biological control of bark-feeding moth Indarbela dea on field-infested litchi trees. Schulte MJ; Martin K; Büchse A; Sauerborn J Pest Manag Sci; 2009 Jan; 65(1):105-12. PubMed ID: 18823078 [TBL] [Abstract][Full Text] [Related]
38. Effect of temperature on the development of Steinernema carpocapsae and Steinernema feltiae (Nematoda: Rhabditida) in liquid culture. Hirao A; Ehlers RU Appl Microbiol Biotechnol; 2009 Oct; 84(6):1061-7. PubMed ID: 19455323 [TBL] [Abstract][Full Text] [Related]
39. The role of pilin protein of Xenorhabdus nematophila against immune defense reactions of insects. Darsouei R; Karimi J; Dunphy GB J Insect Physiol; 2017 Aug; 101():82-90. PubMed ID: 28716396 [TBL] [Abstract][Full Text] [Related]
40. The Steinernema carpocapsae intestinal vesicle contains a subcellular structure with which Xenorhabdus nematophila associates during colonization initiation. Martens EC; Goodrich-Blair H Cell Microbiol; 2005 Dec; 7(12):1723-35. PubMed ID: 16309459 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]