These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
180 related articles for article (PubMed ID: 24020269)
41. An IMD-like pathway mediates the intestinal immunity to modulate the homeostasis of gut microbiota in Rhynchophorus ferrugineus Olivier (Coleoptera: Dryophthoridae). Xiao R; Wang X; Xie E; Ji T; Li X; Muhammad A; Yin X; Hou Y; Shi Z Dev Comp Immunol; 2019 Aug; 97():20-27. PubMed ID: 30914318 [TBL] [Abstract][Full Text] [Related]
42. Effects of single and combined applications of entomopathogenic fungi and nematodes against Rhynchophorus ferrugineus (Olivier). Wakil W; Yasin M; Shapiro-Ilan D Sci Rep; 2017 Jul; 7(1):5971. PubMed ID: 28729649 [TBL] [Abstract][Full Text] [Related]
43. Infection of the red palm weevil (Rhynchophorus ferrugineus) by the entomopathogenic fungus Beauveria bassiana: a SEM study. Güerri-Agulló B; Gómez-Vidal S; Asensio L; Barranco P; Lopez-Llorca LV Microsc Res Tech; 2010 Jul; 73(7):714-25. PubMed ID: 20025054 [TBL] [Abstract][Full Text] [Related]
44. Potential of an indigenous strain of the entomopathogenic fungus Beauveria bassiana as a biological control agent against the Red Palm Weevil, Rhynchophorus ferrugineus. Dembilio O; Quesada-Moraga E; Santiago-Alvarez C; Jacas JA J Invertebr Pathol; 2010 Jul; 104(3):214-21. PubMed ID: 20398670 [TBL] [Abstract][Full Text] [Related]
45. The culturable bacterial community of frass produced by larvae of Rhynchophorus ferrugineus Olivier (Coleoptera: Curculionidae) in the Canary island date palm. Butera G; Ferraro C; Colazza S; Alonzo G; Quatrini P Lett Appl Microbiol; 2012 Jun; 54(6):530-6. PubMed ID: 22404299 [TBL] [Abstract][Full Text] [Related]
46. Two groups of entomopathogenic bacteria, Photorhabdus and Xenorhabdus, share an inhibitory action against phospholipase A2 to induce host immunodepression. Kim Y; Ji D; Cho S; Park Y J Invertebr Pathol; 2005 Jul; 89(3):258-64. PubMed ID: 15979640 [TBL] [Abstract][Full Text] [Related]
47. New insights into the colonization and release processes of Xenorhabdus nematophila and the morphology and ultrastructure of the bacterial receptacle of its nematode host, Steinernema carpocapsae. Snyder H; Stock SP; Kim SK; Flores-Lara Y; Forst S Appl Environ Microbiol; 2007 Aug; 73(16):5338-46. PubMed ID: 17526783 [TBL] [Abstract][Full Text] [Related]
48. Simulated roots and host feeding enhance infection of subterranean insects by the entomopathogenic nematode Steinernema carpocapsae. Ennis DE; Dillon AB; Griffin CT J Invertebr Pathol; 2010 Feb; 103(2):140-3. PubMed ID: 19932700 [TBL] [Abstract][Full Text] [Related]
49. Basic bio-ecological parameters of the invasive red palm weevil, Rhynchophorus ferrugineus (Coleoptera: Curculionidae), in Phoenix canariensis under Mediterranean climate. Dembilio O; Jacas JA Bull Entomol Res; 2011 Apr; 101(2):153-63. PubMed ID: 20822555 [TBL] [Abstract][Full Text] [Related]
50. Susceptibility and possible resistance mechanisms in the palm species Phoenix dactylifera, Chamaerops humilis and Washingtonia filifera against Rhynchophorus ferrugineus (Olivier, 1790) (Coleoptera: Curculionidae). Cangelosi B; Clematis F; Curir P; Monroy F Bull Entomol Res; 2016 Jun; 106(3):341-6. PubMed ID: 26976073 [TBL] [Abstract][Full Text] [Related]
51. Toxicity and Detoxification Mechanism of Black Pepper and Its Major Constituent in Controlling Rhynchophorus ferrugineus Olivier (Curculionidae: Coleoptera). Hussain A; Rizwan-Ul-Haq M; Al-Ayedh H; Aljabr AM Neotrop Entomol; 2017 Dec; 46(6):685-693. PubMed ID: 28326461 [TBL] [Abstract][Full Text] [Related]
52. An entomopathogenic bacterium strain, Bacillus thuringiensis, as a biological control agent against the red palm weevil, Rhynchophorus ferrugineus (Coleoptera: Curculionidae). Pu YC; Ma TL; Hou YM; Sun M Pest Manag Sci; 2017 Jul; 73(7):1494-1502. PubMed ID: 27862867 [TBL] [Abstract][Full Text] [Related]
53. A Nematode Isolate, Oscheius Tipulae, Exhibiting a Wide Entomopathogenic Spectrum and its Application to Control Dipteran Insect Pests. Abdisa E; Esmaeily M; Kwon J; Jin G; Kim Y Arch Insect Biochem Physiol; 2024 Sep; 117(1):e22152. PubMed ID: 39323103 [TBL] [Abstract][Full Text] [Related]
54. Application of toxins from the entomopathogenic bacterium, Xenorhabdus nematophila, for the control of insects on foliage. Mahar AN; Al-Siyabi AA; Elawad SA; Hague NG; Gowen SR Commun Agric Appl Biol Sci; 2006; 71(2 Pt A):233-8. PubMed ID: 17390798 [TBL] [Abstract][Full Text] [Related]
55. Insecticidal potency of RNAi-based catalase knockdown in Rhynchophorus ferrugineus (Oliver) (Coleoptera: Curculionidae). Al-Ayedh H; Rizwan-Ul-Haq M; Hussain A; Aljabr AM Pest Manag Sci; 2016 Nov; 72(11):2118-2127. PubMed ID: 26822903 [TBL] [Abstract][Full Text] [Related]
56. Disruption impact of citronella and menthol insecticides on adults behavior and hemocytes morphology in the red palm weevil Al Dawsari MM; Alam P Sci Prog; 2022; 105(1):368504221079437. PubMed ID: 35188836 [TBL] [Abstract][Full Text] [Related]
57. Influence of Asafoetida Extract on the Virulence of the Entomopathogenic Nematode Shaik HA; Mishra A Microorganisms; 2023 Jun; 11(7):. PubMed ID: 37512851 [TBL] [Abstract][Full Text] [Related]
58. Effect of bacterial symbionts Xenorhabdus on mortality of infective juveniles of two Steinernema species. Emelianoff V; Sicard M; Le Brun N; Moulia C; Ferdy JB Parasitol Res; 2007 Feb; 100(3):657-9. PubMed ID: 16944202 [TBL] [Abstract][Full Text] [Related]
59. An improved method for generating axenic entomopathogenic nematodes. Yadav S; Shokal U; Forst S; Eleftherianos I BMC Res Notes; 2015 Sep; 8():461. PubMed ID: 26386557 [TBL] [Abstract][Full Text] [Related]
60. Manifold aspects of specificity in a nematode-bacterium mutualism. Chapuis E; Emelianoff V; Paulmier V; Le Brun N; Pagès S; Sicard M; Ferdy JB J Evol Biol; 2009 Oct; 22(10):2104-17. PubMed ID: 19732258 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]