These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
347 related articles for article (PubMed ID: 24020402)
1. Heavy metal pollution decreases microbial abundance, diversity and activity within particle-size fractions of a paddy soil. Chen J; He F; Zhang X; Sun X; Zheng J; Zheng J FEMS Microbiol Ecol; 2014 Jan; 87(1):164-81. PubMed ID: 24020402 [TBL] [Abstract][Full Text] [Related]
2. Response of rhizosphere microbial community structure and diversity to heavy metal co-pollution in arable soil. Deng L; Zeng G; Fan C; Lu L; Chen X; Chen M; Wu H; He X; He Y Appl Microbiol Biotechnol; 2015 Oct; 99(19):8259-69. PubMed ID: 26062530 [TBL] [Abstract][Full Text] [Related]
3. Effects of Cd and Pb on soil microbial community structure and activities. Khan S; Hesham Ael-L; Qiao M; Rehman S; He JZ Environ Sci Pollut Res Int; 2010 Feb; 17(2):288-96. PubMed ID: 19333640 [TBL] [Abstract][Full Text] [Related]
4. The Bacterial and Fungal Diversity of an Aged PAH- and Heavy Metal-Contaminated Soil is Affected by Plant Cover and Edaphic Parameters. Bourceret A; Cébron A; Tisserant E; Poupin P; Bauda P; Beguiristain T; Leyval C Microb Ecol; 2016 Apr; 71(3):711-24. PubMed ID: 26440298 [TBL] [Abstract][Full Text] [Related]
5. Decline in topsoil microbial quotient, fungal abundance and C utilization efficiency of rice paddies under heavy metal pollution across South China. Liu Y; Zhou T; Crowley D; Li L; Liu D; Zheng J; Yu X; Pan G; Hussain Q; Zhang X; Zheng J PLoS One; 2012; 7(6):e38858. PubMed ID: 22701725 [TBL] [Abstract][Full Text] [Related]
6. The variation in microbial community structure under different heavy metal contamination levels in paddy soils. Lin Y; Ye Y; Hu Y; Shi H Ecotoxicol Environ Saf; 2019 Sep; 180():557-564. PubMed ID: 31128554 [TBL] [Abstract][Full Text] [Related]
7. The influence of soil heavy metals pollution on soil microbial biomass, enzyme activity, and community composition near a copper smelter. Wang Y; Shi J; Wang H; Lin Q; Chen X; Chen Y Ecotoxicol Environ Saf; 2007 May; 67(1):75-81. PubMed ID: 16828162 [TBL] [Abstract][Full Text] [Related]
8. Microbial functional diversity and carbon use feedback in soils as affected by heavy metals. Xu Y; Seshadri B; Bolan N; Sarkar B; Ok YS; Zhang W; Rumpel C; Sparks D; Farrell M; Hall T; Dong Z Environ Int; 2019 Apr; 125():478-488. PubMed ID: 30771648 [TBL] [Abstract][Full Text] [Related]
9. Distribution, bioavailability, and leachability of heavy metals in soil particle size fractions of urban soils (northeastern China). Yutong Z; Qing X; Shenggao L Environ Sci Pollut Res Int; 2016 Jul; 23(14):14600-7. PubMed ID: 27068918 [TBL] [Abstract][Full Text] [Related]
10. Fungal community composition change and heavy metal accumulation in response to the long-term application of anaerobically digested slurry in a paddy soil. Chen Z; Wang Q; Ma J; Zou P; Yu Q; Jiang L Ecotoxicol Environ Saf; 2020 Jun; 196():110453. PubMed ID: 32229326 [TBL] [Abstract][Full Text] [Related]
11. Response of microbial communities to long-term fertilization depends on their microhabitat. Neumann D; Heuer A; Hemkemeyer M; Martens R; Tebbe CC FEMS Microbiol Ecol; 2013 Oct; 86(1):71-84. PubMed ID: 23397964 [TBL] [Abstract][Full Text] [Related]
12. Changes in microbial community structure and function within particle size fractions of a paddy soil under different long-term fertilization treatments from the Tai Lake region, China. Zhang P; Zheng J; Pan G; Zhang X; Li L; Tippkötter R Colloids Surf B Biointerfaces; 2007 Aug; 58(2):264-70. PubMed ID: 17507207 [TBL] [Abstract][Full Text] [Related]
13. Effect of long-term industrial waste effluent pollution on soil enzyme activities and bacterial community composition. Subrahmanyam G; Shen JP; Liu YR; Archana G; Zhang LM Environ Monit Assess; 2016 Feb; 188(2):112. PubMed ID: 26803661 [TBL] [Abstract][Full Text] [Related]
14. [Carbon Metabolism Characteristics of the Karst Soil Microbial Community for Pb-Zn Mine Tailings]. Fang JJ; Li Q; Liu C; Jin ZJ; Liang YM; Huang BH; Lu XX; Peng WJ Huan Jing Ke Xue; 2018 May; 39(5):2420-2430. PubMed ID: 29965543 [TBL] [Abstract][Full Text] [Related]
15. Variation of bacterial and fungal community structures in the rhizosphere of hybrid and standard rice cultivars and linkage to CO2 flux. Hussain Q; Liu Y; Zhang A; Pan G; Li L; Zhang X; Song X; Cui L; Jin Z FEMS Microbiol Ecol; 2011 Oct; 78(1):116-28. PubMed ID: 21569061 [TBL] [Abstract][Full Text] [Related]
16. Distribution characteristics of heavy metal(loid)s in aggregates of different size fractions along contaminated paddy soil profile. Huang B; Li Z; Li D; Yuan Z; Chen Z; Huang J Environ Sci Pollut Res Int; 2017 Oct; 24(30):23939-23952. PubMed ID: 28875383 [TBL] [Abstract][Full Text] [Related]
17. Soil fertility and plant diversity enhance microbial performance in metal-polluted soils. Stefanowicz AM; Kapusta P; Szarek-Łukaszewska G; Grodzińska K; Niklińska M; Vogt RD Sci Total Environ; 2012 Nov; 439():211-9. PubMed ID: 23073370 [TBL] [Abstract][Full Text] [Related]
18. Microbial response to heavy metal-polluted soils: community analysis from phospholipid-linked fatty acids and ester-linked fatty acids extracts. Hinojosa MB; Carreira JA; García-Ruíz R; Dick RP J Environ Qual; 2005; 34(5):1789-800. PubMed ID: 16151231 [TBL] [Abstract][Full Text] [Related]
19. Effects of Cd, Cu, Zn and their combined action on microbial biomass and bacterial community structure. Song J; Shen Q; Wang L; Qiu G; Shi J; Xu J; Brookes PC; Liu X Environ Pollut; 2018 Dec; 243(Pt A):510-518. PubMed ID: 30216883 [TBL] [Abstract][Full Text] [Related]
20. [Microbial Communities in Soils of Qingshuitang Industrial District in Zhuzhou]. Shen L; Li ZH; Zeng WM; Yu RL; Wu XL; Li JK; Wang SK Huan Jing Ke Xue; 2018 Nov; 39(11):5151-5162. PubMed ID: 30628240 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]