BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 24020941)

  • 1. Improvement of n-butanol tolerance in Escherichia coli by membrane-targeted tilapia metallothionein.
    Chin WC; Lin KH; Chang JJ; Huang CC
    Biotechnol Biofuels; 2013 Sep; 6(1):130. PubMed ID: 24020941
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Improved n-butanol production via co-expression of membrane-targeted tilapia metallothionein and the clostridial metabolic pathway in Escherichia coli.
    Chin WC; Lin KH; Liu CC; Tsuge K; Huang CC
    BMC Biotechnol; 2017 Apr; 17(1):36. PubMed ID: 28399854
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Genetic improvement of butanol tolerance in Escherichia coli by cell surface expression of fish metallothionein.
    Lin KH; Chin WC; Lee AH; Huang CC
    Bioeng Bugs; 2011; 2(1):55-7. PubMed ID: 21636989
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mercury resistance and accumulation in Escherichia coli with cell surface expression of fish metallothionein.
    Lin KH; Chien MF; Hsieh JL; Huang CC
    Appl Microbiol Biotechnol; 2010 Jun; 87(2):561-9. PubMed ID: 20174791
    [TBL] [Abstract][Full Text] [Related]  

  • 5. DNA microarray of global transcription factor mutant reveals membrane-related proteins involved in n-butanol tolerance in Escherichia coli.
    Si HM; Zhang F; Wu AN; Han RZ; Xu GC; Ni Y
    Biotechnol Biofuels; 2016; 9():114. PubMed ID: 27252779
    [TBL] [Abstract][Full Text] [Related]  

  • 6. pH-induced change in cell susceptibility to butanol in a high butanol-tolerant bacterium, Enterococcus faecalis strain CM4A.
    Kanno M; Tamaki H; Mitani Y; Kimura N; Hanada S; Kamagata Y
    Biotechnol Biofuels; 2015; 8():69. PubMed ID: 25904984
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Functional genomic study of exogenous n-butanol stress in Escherichia coli.
    Rutherford BJ; Dahl RH; Price RE; Szmidt HL; Benke PI; Mukhopadhyay A; Keasling JD
    Appl Environ Microbiol; 2010 Mar; 76(6):1935-45. PubMed ID: 20118358
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Identification of ethanol tolerant outer membrane proteome reveals OmpC-dependent mechanism in a manner of EnvZ/OmpR regulation in Escherichia coli.
    Zhang DF; Ye JZ; Dai HH; Lin XM; Li H; Peng XX
    J Proteomics; 2018 May; 179():92-99. PubMed ID: 29518576
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Global Functional Analysis of Butanol-Sensitive
    Jeong H; Lee SW; Kim SH; Kim EY; Kim S; Yoon SH
    J Microbiol Biotechnol; 2017 Jun; 27(6):1171-1179. PubMed ID: 28335589
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Improved tolerance to various abiotic stresses in transgenic sweet potato (Ipomoea batatas) expressing spinach betaine aldehyde dehydrogenase.
    Fan W; Zhang M; Zhang H; Zhang P
    PLoS One; 2012; 7(5):e37344. PubMed ID: 22615986
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Tolerance against butanol stress by disrupting succinylglutamate desuccinylase in
    Guo Y; Lu B; Tang H; Bi D; Zhang Z; Lin L; Pang H
    RSC Adv; 2019 Apr; 9(21):11683-11695. PubMed ID: 35517002
    [No Abstract]   [Full Text] [Related]  

  • 12. Identification of functional butanol-tolerant genes from
    He X; Xue T; Ma Y; Zhang J; Wang Z; Hong J; Hui L; Qiao J; Song H; Zhang M
    Biotechnol Biofuels; 2019; 12():73. PubMed ID: 30976323
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Genetic improvement of n-butanol tolerance in Escherichia coli by heterologous overexpression of groESL operon from Clostridium acetobutylicum.
    Abdelaal AS; Ageez AM; Abd El-Hadi AE; Abdallah NA
    3 Biotech; 2015 Aug; 5(4):401-410. PubMed ID: 28324542
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Improved n-butanol tolerance in Escherichia coli by controlling membrane related functions.
    Bui le M; Lee JY; Geraldi A; Rahman Z; Lee JH; Kim SC
    J Biotechnol; 2015 Jun; 204():33-44. PubMed ID: 25858152
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Butanol as a regulatory factor of ompC gene expression in E. coli cells].
    Seregina TA; Shakulov RS; Mironov AS
    Genetika; 2012 Nov; 48(11):1297-305. PubMed ID: 23297485
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Overexpression of a
    Patankar HV; Al-Harrasi I; Al Kharusi L; Jana GA; Al-Yahyai R; Sunkar R; Yaish MW
    Int J Mol Sci; 2019 Jun; 20(12):. PubMed ID: 31212812
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Genetic determinants for n-butanol tolerance in evolved Escherichia coli mutants: cross adaptation and antagonistic pleiotropy between n-butanol and other stressors.
    Reyes LH; Abdelaal AS; Kao KC
    Appl Environ Microbiol; 2013 Sep; 79(17):5313-20. PubMed ID: 23811509
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Metabolic engineering of Escherichia coli for 1-butanol and 1-propanol production via the keto-acid pathways.
    Shen CR; Liao JC
    Metab Eng; 2008 Nov; 10(6):312-20. PubMed ID: 18775501
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Engineering global transcription factor cyclic AMP receptor protein of Escherichia coli for improved 1-butanol tolerance.
    Zhang H; Chong H; Ching CB; Song H; Jiang R
    Appl Microbiol Biotechnol; 2012 May; 94(4):1107-17. PubMed ID: 22466954
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Genomic library screens for genes involved in n-butanol tolerance in Escherichia coli.
    Reyes LH; Almario MP; Kao KC
    PLoS One; 2011 Mar; 6(3):e17678. PubMed ID: 21408113
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.