These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

104 related articles for article (PubMed ID: 24020960)

  • 1. Emitting state of 5-hydroxyindole, 5-hydroxytryptophan, and 5-hydroxytryptophan incorporated in proteins.
    Petrović DM; Hesp BH; Broos J
    J Phys Chem B; 2013 Sep; 117(37):10792-7. PubMed ID: 24020960
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biosynthetic incorporation of tryptophan analogues into staphylococcal nuclease: effect of 5-hydroxytryptophan and 7-azatryptophan on structure and stability.
    Wong CY; Eftink MR
    Protein Sci; 1997 Mar; 6(3):689-97. PubMed ID: 9070451
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characterization of aminoacyl-adenylates in B. subtilis tryptophanyl-tRNA synthetase, by the fluorescence of tryptophan analogs 5-hydroxytryptophan and 7-azatryptophan.
    Hogue CW; Szabo AG
    Biophys Chem; 1993 Dec; 48(2):159-69. PubMed ID: 8298054
    [TBL] [Abstract][Full Text] [Related]  

  • 4. PHOXI: A High Quantum Yield, Solvent-Sensitive Blue Fluorescent 5-Hydroxytryptophan Derivative Synthesized within Ten Minutes under Aqueous, Ambient Conditions.
    Grigoryan A; Eisenberg AS; Juszczak LJ
    J Phys Chem B; 2017 Aug; 121(30):7256-7266. PubMed ID: 28686023
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A new intrinsic fluorescent probe for proteins. Biosynthetic incorporation of 5-hydroxytryptophan into oncomodulin.
    Hogue CW; Rasquinha I; Szabo AG; MacManus JP
    FEBS Lett; 1992 Oct; 310(3):269-72. PubMed ID: 1383030
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fluorescence properties of recombinant tropomyosin containing tryptophan, 5-hydroxytryptophan and 7-azatryptophan.
    Das K; Ashby KD; Smirnov AV; Reinach FC; Petrich JW; Farah CS
    Photochem Photobiol; 1999 Nov; 70(5):719-30. PubMed ID: 10568167
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Phosphorescence and optically detected magnetic resonance characterization of the environments of tryptophan analogues in staphylococcal nuclease, its V66W mutant, and Delta 137-149 fragment.
    Ozarowski A; Wu JQ; Davis SK; Wong CY; Eftink MR; Maki AH
    Biochemistry; 1998 Jun; 37(25):8954-64. PubMed ID: 9636037
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Luminescence behaviour of 5-hydroxyindole in different environments.
    Sengupta B; Guharay J; Sengupta PK
    Spectrochim Acta A Mol Biomol Spectrosc; 2000 May; 56(6):1213-21. PubMed ID: 10845550
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Low temperature luminescence behaviours of 7-azatryptophan, 5-hydroxytryptophan and their chromophoric moieties.
    Sengupta B; Guharay J; Chakraborty A; Sengupta PK
    Spectrochim Acta A Mol Biomol Spectrosc; 2002 Jul; 58(9):2005-12. PubMed ID: 12164498
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sensitization of lanthanides by nonnatural amino acids.
    Brennan JD; Capretta A; Yong K; Gerritsma D; Flora KK; Jones A
    Photochem Photobiol; 2002 Feb; 75(2):117-21. PubMed ID: 11883598
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Incorporation of tryptophan analogues into staphylococcal nuclease, its V66W mutant, and Delta 137-149 fragment: spectroscopic studies.
    Wong CY; Eftink MR
    Biochemistry; 1998 Jun; 37(25):8938-46. PubMed ID: 9636035
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ionization potentials of fluoroindoles and the origin of nonexponential tryptophan fluorescence decay in proteins.
    Liu T; Callis PR; Hesp BH; de Groot M; Buma WJ; Broos J
    J Am Chem Soc; 2005 Mar; 127(11):4104-13. PubMed ID: 15771548
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A spectroscopic survey of substituted indoles reveals consequences of a stabilized 1Lb transition.
    Meng X; Harricharran T; Juszczak LJ
    Photochem Photobiol; 2013; 89(1):40-50. PubMed ID: 22882557
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Non-natural amino acid fluorophores for one- and two-step fluorescence resonance energy transfer applications.
    Rogers JM; Lippert LG; Gai F
    Anal Biochem; 2010 Apr; 399(2):182-9. PubMed ID: 20036210
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Spectral enhancement of proteins: biological incorporation and fluorescence characterization of 5-hydroxytryptophan in bacteriophage lambda cI repressor.
    Ross JB; Senear DF; Waxman E; Kombo BB; Rusinova E; Huang YT; Laws WR; Hasselbacher CA
    Proc Natl Acad Sci U S A; 1992 Dec; 89(24):12023-7. PubMed ID: 1465434
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A continuous fluorescence assay for tryptophan hydroxylase.
    Moran GR; Fitzpatrick PF
    Anal Biochem; 1999 Jan; 266(1):148-52. PubMed ID: 9887224
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Correlation between dynamics, structure and spectral properties of human alpha 1-acid glycoprotein (orosomucoid): a fluorescence approach.
    Albani JR
    Spectrochim Acta A Mol Biomol Spectrosc; 1998 Jan; 54A(1):175-83. PubMed ID: 9532772
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The light-induced reactions of tryptophan with halocompounds.
    Edwards RA; Jickling G; Turner RJ
    Photochem Photobiol; 2002 Apr; 75(4):362-8. PubMed ID: 12003125
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Calculating the fluorescence of 5-hydroxytryptophan in proteins.
    Robinson D; Besley NA; O'Shea P; Hirst JD
    J Phys Chem B; 2009 Oct; 113(43):14521-8. PubMed ID: 19795822
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Explaining level inversion of the La and Lb States of indole and indole derivatives in polar solvents.
    Brisker-Klaiman D; Dreuw A
    Chemphyschem; 2015 Jun; 16(8):1695-702. PubMed ID: 25802126
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.