BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

94 related articles for article (PubMed ID: 24021036)

  • 21. [Thiamine triphosphatase activity in mammalian mitochondria].
    Rusina IM; Makarchikov AF
    Ukr Biokhim Zh (1999); 2003; 75(5):63-8. PubMed ID: 14681994
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Molecular characterization of a specific thiamine triphosphatase widely expressed in mammalian tissues.
    Lakaye B; Makarchikov AF; Antunes AF; Zorzi W; Coumans B; De Pauw E; Wins P; Grisar T; Bettendorff L
    J Biol Chem; 2002 Apr; 277(16):13771-7. PubMed ID: 11827967
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The relation of the soluble thiamine triphosphatase activity of various rat tissues to nonspecific phosphatases.
    Penttinen HK; Uotila L
    Med Biol; 1981 Jun; 59(3):177-84. PubMed ID: 6273668
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Nucleoside-triphosphatase and hydrolysis of thiamin triphosphate in Escherichia coli.
    Nishimune T; Ito S; Abe M; Kimoto M; Hayashi R
    Biochim Biophys Acta; 1987 Jan; 923(1):74-82. PubMed ID: 3026493
    [TBL] [Abstract][Full Text] [Related]  

  • 25. [Existence of two different active sites on thiamine binding protein in plasma membranes of synaptosomes].
    Parkhomenko IuM; Strokina AA; Pilipchuk SIu; Stepanenko SP; Chekhovskaia LI; Donchenko GV
    Ukr Biokhim Zh (1999); 2010; 82(1):34-41. PubMed ID: 20684226
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Structural Determinants for Substrate Binding and Catalysis in Triphosphate Tunnel Metalloenzymes.
    Martinez J; Truffault V; Hothorn M
    J Biol Chem; 2015 Sep; 290(38):23348-60. PubMed ID: 26221030
    [TBL] [Abstract][Full Text] [Related]  

  • 27. [Characteristics of thiamine triphosphatase from neural cells plasma membranes].
    Sidorova AA; Stepanenko SP; Parkhomenko IuM
    Ukr Biokhim Zh (1999); 2009; 81(3):57-65. PubMed ID: 19877430
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Thiamine triphosphate: a ubiquitous molecule in search of a physiological role.
    Bettendorff L; Lakaye B; Kohn G; Wins P
    Metab Brain Dis; 2014 Dec; 29(4):1069-82. PubMed ID: 24590690
    [TBL] [Abstract][Full Text] [Related]  

  • 29. [Cytosolic thiamine triphosphatase from bovine brain. 1. Regulation of enzyme activity].
    Chernikevich IP; Makarchikov AF
    Ukr Biokhim Zh (1978); 1997; 69(5-6):41-50. PubMed ID: 9606824
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Structure-function relationships in Escherichia coli adenylate cyclase.
    Linder JU
    Biochem J; 2008 Nov; 415(3):449-54. PubMed ID: 18620542
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Hydrolysis and synthesis of thiamin triphosphate in bacteria.
    Nishimune T; Hayashi R
    J Nutr Sci Vitaminol (Tokyo); 1987 Apr; 33(2):113-27. PubMed ID: 3039089
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Novel triphosphate phosphohydrolase activity of Clostridium thermocellum TTM, a member of the triphosphate tunnel metalloenzyme superfamily.
    Keppetipola N; Jain R; Shuman S
    J Biol Chem; 2007 Apr; 282(16):11941-9. PubMed ID: 17303560
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Divalent metal requirements for catalysis and stability of the RNA triphosphatase from Trypanosoma cruzi.
    Massayuki Kikuti C; Tersariol IL; Schenkman S
    Mol Biochem Parasitol; 2006 Nov; 150(1):83-95. PubMed ID: 16887207
    [TBL] [Abstract][Full Text] [Related]  

  • 34. [Thiamine triphosphatase activities and bioelectrogenesis].
    Bettendorff L; Schoffeniels E
    Bull Mem Acad R Med Belg; 1987; 142(2-3):228-36. PubMed ID: 2822187
    [No Abstract]   [Full Text] [Related]  

  • 35. Computer analysis of bacterial haloacid dehalogenases defines a large superfamily of hydrolases with diverse specificity. Application of an iterative approach to database search.
    Koonin EV; Tatusov RL
    J Mol Biol; 1994 Nov; 244(1):125-32. PubMed ID: 7966317
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Structure of the class IV adenylyl cyclase reveals a novel fold.
    Gallagher DT; Smith NN; Kim SK; Heroux A; Robinson H; Reddy PT
    J Mol Biol; 2006 Sep; 362(1):114-22. PubMed ID: 16905149
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Thiamin diphosphate in biological chemistry: new aspects of thiamin metabolism, especially triphosphate derivatives acting other than as cofactors.
    Bettendorff L; Wins P
    FEBS J; 2009 Jun; 276(11):2917-25. PubMed ID: 19490098
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Structure and kinetics of phosphonopyruvate hydrolase from Variovorax sp. Pal2: new insight into the divergence of catalysis within the PEP mutase/isocitrate lyase superfamily.
    Chen CC; Han Y; Niu W; Kulakova AN; Howard A; Quinn JP; Dunaway-Mariano D; Herzberg O
    Biochemistry; 2006 Sep; 45(38):11491-504. PubMed ID: 16981709
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Catalytic role for arginine 188 in the C-C hydrolase catalytic mechanism for Escherichia coli MhpC and Burkholderia xenovorans LB400 BphD.
    Li C; Li JJ; Montgomery MG; Wood SP; Bugg TD
    Biochemistry; 2006 Oct; 45(41):12470-9. PubMed ID: 17029402
    [TBL] [Abstract][Full Text] [Related]  

  • 40. D-Ribulose 5-phosphate 3-epimerase: functional and structural relationships to members of the ribulose-phosphate binding (beta/alpha)8-barrel superfamily.
    Akana J; Fedorov AA; Fedorov E; Novak WR; Babbitt PC; Almo SC; Gerlt JA
    Biochemistry; 2006 Feb; 45(8):2493-503. PubMed ID: 16489742
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.