BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

201 related articles for article (PubMed ID: 24021383)

  • 1. Accounting for epistatic interactions improves the functional analysis of protein structures.
    Wilkins AD; Venner E; Marciano DC; Erdin S; Atri B; Lua RC; Lichtarge O
    Bioinformatics; 2013 Nov; 29(21):2714-21. PubMed ID: 24021383
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sequence and structure continuity of evolutionary importance improves protein functional site discovery and annotation.
    Wilkins AD; Lua R; Erdin S; Ward RM; Lichtarge O
    Protein Sci; 2010 Jul; 19(7):1296-311. PubMed ID: 20506260
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evolutionary trace annotation of protein function in the structural proteome.
    Erdin S; Ward RM; Venner E; Lichtarge O
    J Mol Biol; 2010 Mar; 396(5):1451-73. PubMed ID: 20036248
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Disentangling evolutionary signals: conservation, specificity determining positions and coevolution. Implication for catalytic residue prediction.
    Teppa E; Wilkins AD; Nielsen M; Buslje CM
    BMC Bioinformatics; 2012 Sep; 13():235. PubMed ID: 22978315
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sequence based residue depth prediction using evolutionary information and predicted secondary structure.
    Zhang H; Zhang T; Chen K; Shen S; Ruan J; Kurgan L
    BMC Bioinformatics; 2008 Sep; 9():388. PubMed ID: 18803867
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Joint evolutionary trees: a large-scale method to predict protein interfaces based on sequence sampling.
    Engelen S; Trojan LA; Sacquin-Mora S; Lavery R; Carbone A
    PLoS Comput Biol; 2009 Jan; 5(1):e1000267. PubMed ID: 19165315
    [TBL] [Abstract][Full Text] [Related]  

  • 7. CoeViz: a web-based tool for coevolution analysis of protein residues.
    Baker FN; Porollo A
    BMC Bioinformatics; 2016 Mar; 17():119. PubMed ID: 26956673
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Identification of coevolving residues and coevolution potentials emphasizing structure, bond formation and catalytic coordination in protein evolution.
    Little DY; Chen L
    PLoS One; 2009; 4(3):e4762. PubMed ID: 19274093
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Network models of TEM β-lactamase mutations coevolving under antibiotic selection show modular structure and anticipate evolutionary trajectories.
    Guthrie VB; Allen J; Camps M; Karchin R
    PLoS Comput Biol; 2011 Sep; 7(9):e1002184. PubMed ID: 21966264
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An evolution based classifier for prediction of protein interfaces without using protein structures.
    Res I; Mihalek I; Lichtarge O
    Bioinformatics; 2005 May; 21(10):2496-501. PubMed ID: 15728113
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Exploring sequence-structure relationships in the tyrosine kinome space: functional classification of the binding specificity mechanisms for cancer therapeutics.
    Verkhivker GM
    Bioinformatics; 2007 Aug; 23(15):1919-26. PubMed ID: 17537753
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structure-based prediction of protein- peptide binding regions using Random Forest.
    Taherzadeh G; Zhou Y; Liew AW; Yang Y
    Bioinformatics; 2018 Feb; 34(3):477-484. PubMed ID: 29028926
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Imprint of evolutionary conservation and protein structure variation on the binding function of protein tyrosine kinases.
    Verkhivker GM
    Bioinformatics; 2006 Aug; 22(15):1846-54. PubMed ID: 16720585
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Protein contact prediction by integrating joint evolutionary coupling analysis and supervised learning.
    Ma J; Wang S; Wang Z; Xu J
    Bioinformatics; 2015 Nov; 31(21):3506-13. PubMed ID: 26275894
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Masking residues using context-specific evolutionary conservation significantly improves short linear motif discovery.
    Davey NE; Shields DC; Edwards RJ
    Bioinformatics; 2009 Feb; 25(4):443-50. PubMed ID: 19136552
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sequence coevolution between RNA and protein characterized by mutual information between residue triplets.
    Brandman R; Brandman Y; Pande VS
    PLoS One; 2012; 7(1):e30022. PubMed ID: 22279560
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Local Geometry and Evolutionary Conservation of Protein Surfaces Reveal the Multiple Recognition Patches in Protein-Protein Interactions.
    Laine E; Carbone A
    PLoS Comput Biol; 2015 Dec; 11(12):e1004580. PubMed ID: 26690684
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterization and prediction of residues determining protein functional specificity.
    Capra JA; Singh M
    Bioinformatics; 2008 Jul; 24(13):1473-80. PubMed ID: 18450811
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Large-scale co-evolution analysis of protein structural interlogues using the global protein structural interactome map (PSIMAP).
    Kim WK; Bolser DM; Park JH
    Bioinformatics; 2004 May; 20(7):1138-50. PubMed ID: 14764552
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Statistical analysis of mutational epistasis to reveal intramolecular interaction networks in proteins.
    Miton CM; Chen JZ; Ost K; Anderson DW; Tokuriki N
    Methods Enzymol; 2020; 643():243-280. PubMed ID: 32896284
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.