BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

352 related articles for article (PubMed ID: 24021532)

  • 1. Identification and characterization of microRNAs in the developing maize endosperm.
    Gu Y; Liu Y; Zhang J; Liu H; Hu Y; Du H; Li Y; Chen J; Wei B; Huang Y
    Genomics; 2013; 102(5-6):472-8. PubMed ID: 24021532
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Identification and characterization of maize microRNAs involved in the very early stage of seed germination.
    Wang L; Liu H; Li D; Chen H
    BMC Genomics; 2011 Mar; 12():154. PubMed ID: 21414237
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Combined small RNA and degradome sequencing reveals microRNA regulation during immature maize embryo dedifferentiation.
    Shen Y; Jiang Z; Lu S; Lin H; Gao S; Peng H; Yuan G; Liu L; Zhang Z; Zhao M; Rong T; Pan G
    Biochem Biophys Res Commun; 2013 Nov; 441(2):425-30. PubMed ID: 24183719
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Genome-wide identification and analysis of microRNA responding to long-term waterlogging in crown roots of maize seedlings.
    Zhai L; Liu Z; Zou X; Jiang Y; Qiu F; Zheng Y; Zhang Z
    Physiol Plant; 2013 Feb; 147(2):181-93. PubMed ID: 22607471
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Identification of Taxus microRNAs and their targets with high-throughput sequencing and degradome analysis.
    Hao DC; Yang L; Xiao PG; Liu M
    Physiol Plant; 2012 Dec; 146(4):388-403. PubMed ID: 22708792
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identification and characterisation of maize microRNAs involved in developing ears.
    Ding D; Li W; Han M; Wang Y; Fu Z; Wang B; Tang J
    Plant Biol (Stuttg); 2014 Jan; 16(1):9-15. PubMed ID: 23668946
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Identification of 188 conserved maize microRNAs and their targets.
    Zhang B; Pan X; Anderson TA
    FEBS Lett; 2006 Jun; 580(15):3753-62. PubMed ID: 16780841
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Transcript profiling of microRNAs during the early development of the maize brace root via Solexa sequencing.
    Liu P; Yan K; Lei YX; Xu R; Zhang YM; Yang GD; Huang JG; Wu CA; Zheng CC
    Genomics; 2013 Feb; 101(2):149-56. PubMed ID: 23147674
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Grafting-responsive miRNAs in cucumber and pumpkin seedlings identified by high-throughput sequencing at whole genome level.
    Li C; Li Y; Bai L; Zhang T; He C; Yan Y; Yu X
    Physiol Plant; 2014 Aug; 151(4):406-22. PubMed ID: 24279842
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Genome-wide identification of Medicago truncatula microRNAs and their targets reveals their differential regulation by heavy metal.
    Zhou ZS; Zeng HQ; Liu ZP; Yang ZM
    Plant Cell Environ; 2012 Jan; 35(1):86-99. PubMed ID: 21895696
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Deep sequencing of grapevine flower and berry short RNA library for discovery of novel microRNAs and validation of precise sequences of grapevine microRNAs deposited in miRBase.
    Wang C; Wang X; Kibet NK; Song C; Zhang C; Li X; Han J; Fang J
    Physiol Plant; 2011 Sep; 143(1):64-81. PubMed ID: 21496033
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characterization of microRNAs expression during maize seed development.
    Kang M; Zhao Q; Zhu D; Yu J
    BMC Genomics; 2012 Aug; 13():360. PubMed ID: 22853295
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Identification of known microRNAs in root and leaf of maize by deep sequencing].
    Chen J; Lin HJ; Pan GT; Zhang ZM; Zhang B; Shen YO; Qin C; Zhang Q; Zhao MJ
    Yi Chuan; 2010 Nov; 32(11):1175-86. PubMed ID: 21513170
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Global analysis of non-coding small RNAs in Arabidopsis in response to jasmonate treatment by deep sequencing technology.
    Zhang B; Xie D; Jin Z
    J Integr Plant Biol; 2012 Feb; 54(2):73-86. PubMed ID: 22221297
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Identification of novel maize miRNAs by measuring the precision of precursor processing.
    Jiao Y; Song W; Zhang M; Lai J
    BMC Plant Biol; 2011 Oct; 11():141. PubMed ID: 22014170
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Conservation and evolution of miRNA regulatory programs in plant development.
    Willmann MR; Poethig RS
    Curr Opin Plant Biol; 2007 Oct; 10(5):503-11. PubMed ID: 17709279
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Identification and characterization of salt-responsive microRNAs in Populus tomentosa by high-throughput sequencing.
    Ren Y; Chen L; Zhang Y; Kang X; Zhang Z; Wang Y
    Biochimie; 2013 Apr; 95(4):743-50. PubMed ID: 23142627
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Identification and comparative analysis of low phosphate tolerance-associated microRNAs in two maize genotypes.
    Pei L; Jin Z; Li K; Yin H; Wang J; Yang A
    Plant Physiol Biochem; 2013 Sep; 70():221-34. PubMed ID: 23792878
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The differential transcription network between embryo and endosperm in the early developing maize seed.
    Lu X; Chen D; Shu D; Zhang Z; Wang W; Klukas C; Chen LL; Fan Y; Chen M; Zhang C
    Plant Physiol; 2013 May; 162(1):440-55. PubMed ID: 23478895
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Combined small RNA and degradome sequencing reveals novel miRNAs and their targets in response to low nitrate availability in maize.
    Zhao Y; Xu Z; Mo Q; Zou C; Li W; Xu Y; Xie C
    Ann Bot; 2013 Aug; 112(3):633-42. PubMed ID: 23788746
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.