BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

298 related articles for article (PubMed ID: 24021546)

  • 1. Uniform tricalcium phosphate beads with an open porous structure for tissue engineering.
    Ryu TK; Oh MJ; Moon SK; Paik DH; Kim SE; Park JH; Choi SW
    Colloids Surf B Biointerfaces; 2013 Dec; 112():368-73. PubMed ID: 24021546
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Development of a bioactive porous collagen/β-tricalcium phosphate bone graft assisting rapid vascularization for bone tissue engineering applications.
    Baheiraei N; Nourani MR; Mortazavi SMJ; Movahedin M; Eyni H; Bagheri F; Norahan MH
    J Biomed Mater Res A; 2018 Jan; 106(1):73-85. PubMed ID: 28879686
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Development of bioactive porous α-TCP/HAp beads for bone tissue engineering.
    Asaoka T; Ohtake S; Furukawa KS; Tamura A; Ushida T
    J Biomed Mater Res A; 2013 Nov; 101(11):3295-300. PubMed ID: 23983180
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In vitro and in vivo evaluations of 3D porous TCP-coated and non-coated alumina scaffolds.
    Kim YH; Anirban JM; Song HY; Seo HS; Lee BT
    J Biomater Appl; 2011 Feb; 25(6):539-58. PubMed ID: 20207781
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fabrication and biological characteristics of beta-tricalcium phosphate porous ceramic scaffolds reinforced with calcium phosphate glass.
    Cai S; Xu GH; Yu XZ; Zhang WJ; Xiao ZY; Yao KD
    J Mater Sci Mater Med; 2009 Jan; 20(1):351-8. PubMed ID: 18807260
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Preparation and characterization of porous beta-tricalcium phosphate/collagen composites with an integrated structure.
    Zou C; Weng W; Deng X; Cheng K; Liu X; Du P; Shen G; Han G
    Biomaterials; 2005 Sep; 26(26):5276-84. PubMed ID: 15814125
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structural and degradation characteristics of an innovative porous PLGA/TCP scaffold incorporated with bioactive molecular icaritin.
    Xie XH; Wang XL; Zhang G; He YX; Wang XH; Liu Z; He K; Peng J; Leng Y; Qin L
    Biomed Mater; 2010 Oct; 5(5):054109. PubMed ID: 20876954
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Collagen/Beta-Tricalcium Phosphate Based Synthetic Bone Grafts via Dehydrothermal Processing.
    Sarikaya B; Aydin HM
    Biomed Res Int; 2015; 2015():576532. PubMed ID: 26504812
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The influence of prefreezing temperature on pore structure in freeze-dried beta-TCP scaffolds.
    Lin L; Wang Z; Zhou L; Hu Q; Fang M
    Proc Inst Mech Eng H; 2013 Jan; 227(1):50-7. PubMed ID: 23516955
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of VEGF loading on scaffold-confined vascularization.
    Lindhorst D; Tavassol F; von See C; Schumann P; Laschke MW; Harder Y; Bormann KH; Essig H; Kokemüller H; Kampmann A; Voss A; Mülhaupt R; Menger MD; Gellrich NC; Rücker M
    J Biomed Mater Res A; 2010 Dec; 95(3):783-92. PubMed ID: 20725981
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A biodegradable porous composite scaffold of PGA/beta-TCP for bone tissue engineering.
    Cao H; Kuboyama N
    Bone; 2010 Feb; 46(2):386-95. PubMed ID: 19800045
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Rat bone marrow stromal cells-seeded porous gelatin/tricalcium phosphate/oligomeric proanthocyanidins composite scaffold for bone repair.
    Chen KY; Chung CM; Chen YS; Bau DT; Yao CH
    J Tissue Eng Regen Med; 2013 Sep; 7(9):708-19. PubMed ID: 22392838
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ectopic osteoinduction and early degradation of recombinant human bone morphogenetic protein-2-loaded porous beta-tricalcium phosphate in mice.
    Liang G; Yang Y; Oh S; Ong JL; Zheng C; Ran J; Yin G; Zhou D
    Biomaterials; 2005 Jul; 26(20):4265-71. PubMed ID: 15683650
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A facile method for the preparation of monodisperse beads with uniform pore sizes for cell culture.
    Moon SK; Oh MJ; Paik DH; Ryu TK; Park K; Kim SE; Park JH; Kim JH; Choi SW
    Macromol Rapid Commun; 2013 Mar; 34(5):399-405. PubMed ID: 23303665
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fabrication and characterization of toughness-enhanced scaffolds comprising β-TCP/POC using the freeform fabrication system with micro-droplet jetting.
    Gao L; Li C; Chen F; Liu C
    Biomed Mater; 2015 Jun; 10(3):035009. PubMed ID: 26107985
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enhanced effect of β-tricalcium phosphate phase on neovascularization of porous calcium phosphate ceramics: in vitro and in vivo evidence.
    Chen Y; Wang J; Zhu XD; Tang ZR; Yang X; Tan YF; Fan YJ; Zhang XD
    Acta Biomater; 2015 Jan; 11():435-48. PubMed ID: 25246313
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Preparation and characterization of gelatin-chitosan-nanoβ-TCP based scaffold for orthopaedic application.
    Maji K; Dasgupta S; Pramanik K; Bissoyi A
    Mater Sci Eng C Mater Biol Appl; 2018 May; 86():83-94. PubMed ID: 29525100
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Direct 3D powder printing of biphasic calcium phosphate scaffolds for substitution of complex bone defects.
    Castilho M; Moseke C; Ewald A; Gbureck U; Groll J; Pires I; Teßmar J; Vorndran E
    Biofabrication; 2014 Mar; 6(1):015006. PubMed ID: 24429776
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The effect of pore size on tissue ingrowth and neovascularization in porous bioceramics of controlled architecture in vivo.
    Feng B; Jinkang Z; Zhen W; Jianxi L; Jiang C; Jian L; Guolin M; Xin D
    Biomed Mater; 2011 Feb; 6(1):015007. PubMed ID: 21206002
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nanoindentation on porous bioceramic scaffolds for bone tissue engineering.
    Chowdhury S; Thomas V; Dean D; Catledge SA; Vohra YK
    J Nanosci Nanotechnol; 2005 Nov; 5(11):1816-20. PubMed ID: 16433415
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.