These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Seasonality and period-doubling bifurcations in an epidemic model. Aron JL; Schwartz IB J Theor Biol; 1984 Oct; 110(4):665-79. PubMed ID: 6521486 [TBL] [Abstract][Full Text] [Related]
4. Logistic map with a delayed feedback: Stability of a discrete time-delay control of chaos. Buchner T; Zebrowski JJ Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Jan; 63(1 Pt 2):016210. PubMed ID: 11304338 [TBL] [Abstract][Full Text] [Related]
5. Chaos control and synchronization in Bragg acousto-optic bistable systems driven by a separate chaotic system. Wang R; Gao JY Chaos; 2005 Sep; 15(3):33110. PubMed ID: 16252984 [TBL] [Abstract][Full Text] [Related]
6. Bifurcations and chaos in a predator-prey system with the Allee effect. Morozov A; Petrovskii S; Li BL Proc Biol Sci; 2004 Jul; 271(1546):1407-14. PubMed ID: 15306340 [TBL] [Abstract][Full Text] [Related]
7. Chaos in two-loop negative feedback systems. Bastos de Figueiredo JC; Diambra L; Glass L; Malta CP Phys Rev E Stat Nonlin Soft Matter Phys; 2002 May; 65(5 Pt 1):051905. PubMed ID: 12059591 [TBL] [Abstract][Full Text] [Related]
8. Oscillations in controlled biochemical systems. Walter C Biophys J; 1969 Jul; 9(7):863-72. PubMed ID: 5791545 [TBL] [Abstract][Full Text] [Related]
9. Temporal self-organization in biochemical systems: periodic behavior vs. chaos. Goldbeter A; Decroly O Am J Physiol; 1983 Oct; 245(4):R478-83. PubMed ID: 6312816 [TBL] [Abstract][Full Text] [Related]
10. Multistability, oscillations and bifurcations in feedback loops. Leite MC; Wang Y Math Biosci Eng; 2010 Jan; 7(1):83-97. PubMed ID: 20104950 [TBL] [Abstract][Full Text] [Related]
11. Control of chaos in nonlinear systems with time-periodic coefficients. Sinha SC; Dávid A Philos Trans A Math Phys Eng Sci; 2006 Sep; 364(1846):2417-32. PubMed ID: 16893795 [TBL] [Abstract][Full Text] [Related]
12. Synchronous and asynchronous systems of threshold elements. Grondin RO; Porod W; Loeffler CM; Ferry DK Biol Cybern; 1983; 49(1):1-7. PubMed ID: 6652138 [TBL] [Abstract][Full Text] [Related]
13. On the dynamics of controlled metabolic network and cellular behaviour. Sinha S; Ramaswamy R Biosystems; 1987; 20(4):341-54. PubMed ID: 3651567 [TBL] [Abstract][Full Text] [Related]
14. Limit-cycle oscillations and chaos in reaction networks subject to conservation of mass. Di Cera E; Phillipson PE; Wyman J Proc Natl Acad Sci U S A; 1989 Jan; 86(1):142-6. PubMed ID: 2911564 [TBL] [Abstract][Full Text] [Related]
15. Mixed-mode oscillations in a homogeneous pH-oscillatory chemical reaction system. Bakes D; Schreiberová L; Schreiber I; Hauser MJ Chaos; 2008 Mar; 18(1):015102. PubMed ID: 18377083 [TBL] [Abstract][Full Text] [Related]
16. Chaos and hyperchaos in simple gene network with negative feedback and time delays. Khlebodarova TM; Kogai VV; Fadeev SI; Likhoshvai VA J Bioinform Comput Biol; 2017 Apr; 15(2):1650042. PubMed ID: 28052708 [TBL] [Abstract][Full Text] [Related]
17. Feedback loops for chaos in activator-inhibitor systems. Sensse A; Eiswirth M J Chem Phys; 2005 Jan; 122(4):44516. PubMed ID: 15740276 [TBL] [Abstract][Full Text] [Related]
18. Time series analysis of complex dynamics in physiology and medicine. Glass L; Kaplan D Med Prog Technol; 1993; 19(3):115-28. PubMed ID: 8127277 [TBL] [Abstract][Full Text] [Related]
19. Quasiperiodicity route to chaos in a biochemical system. Martinez de la Fuente I; Martinez L; Veguillas J; Aguirregabiria JM Biophys J; 1996 Nov; 71(5):2375-9. PubMed ID: 8913578 [TBL] [Abstract][Full Text] [Related]
20. Modelling periodic oscillation in gene regulatory networks by cyclic feedback systems. Wang R; Jing Z; Chen L Bull Math Biol; 2005 Mar; 67(2):339-67. PubMed ID: 15710184 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]