These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 24021635)

  • 1. GOM-Face: GKP, EOG, and EMG-based multimodal interface with application to humanoid robot control.
    Nam Y; Koo B; Cichocki A; Choi S
    IEEE Trans Biomed Eng; 2014 Feb; 61(2):453-62. PubMed ID: 24021635
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A novel EOG/EEG hybrid human-machine interface adopting eye movements and ERPs: application to robot control.
    Ma J; Zhang Y; Cichocki A; Matsuno F
    IEEE Trans Biomed Eng; 2015 Mar; 62(3):876-89. PubMed ID: 25398172
    [TBL] [Abstract][Full Text] [Related]  

  • 3. EOG-sEMG Human Interface for Communication.
    Tamura H; Yan M; Sakurai K; Tanno K
    Comput Intell Neurosci; 2016; 2016():7354082. PubMed ID: 27418924
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Tongue-rudder: a glossokinetic-potential-based tongue-machine interface.
    Nam Y; Zhao Q; Cichocki A; Choi S
    IEEE Trans Biomed Eng; 2012 Jan; 59(1):290-9. PubMed ID: 22049361
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Controlling a human-computer interface system with a novel classification method that uses electrooculography signals.
    Wu SL; Liao LD; Lu SW; Jiang WL; Chen SA; Lin CT
    IEEE Trans Biomed Eng; 2013 Aug; 60(8):2133-41. PubMed ID: 23446030
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Glossokinetic potential based tongue-machine interface for 1-D extraction.
    Gorur K; Bozkurt MR; Bascil MS; Temurtas F
    Australas Phys Eng Sci Med; 2018 Jun; 41(2):379-391. PubMed ID: 29633174
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Wheelchair control for disabled patients using EMG/EOG based human machine interface: a review.
    Kaur A
    J Med Eng Technol; 2021 Jan; 45(1):61-74. PubMed ID: 33302770
    [TBL] [Abstract][Full Text] [Related]  

  • 8. System for assisted mobility using eye movements based on electrooculography.
    Barea R; Boquete L; Mazo M; López E
    IEEE Trans Neural Syst Rehabil Eng; 2002 Dec; 10(4):209-18. PubMed ID: 12611358
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Wireless intraoral tongue control of an assistive robotic arm for individuals with tetraplegia.
    Andreasen Struijk LNS; Egsgaard LL; Lontis R; Gaihede M; Bentsen B
    J Neuroeng Rehabil; 2017 Nov; 14(1):110. PubMed ID: 29110736
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [An improved weighted median filter and its application in EOG processing].
    Shi N; Wang X; Zou J; Wang B
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2007 Oct; 24(5):1069-72. PubMed ID: 18027699
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hybrid EEG-EOG brain-computer interface system for practical machine control.
    Punsawad Y; Wongsawat Y; Parnichkun M
    Annu Int Conf IEEE Eng Med Biol Soc; 2010; 2010():1360-3. PubMed ID: 21096331
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparison of eye tracking, electrooculography and an auditory brain-computer interface for binary communication: a case study with a participant in the locked-in state.
    Käthner I; Kübler A; Halder S
    J Neuroeng Rehabil; 2015 Sep; 12():76. PubMed ID: 26338101
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An EOG-based wheelchair robotic arm system for assisting patients with severe spinal cord injuries.
    Huang Q; Chen Y; Zhang Z; He S; Zhang R; Liu J; Zhang Y; Shao M; Li Y
    J Neural Eng; 2019 Apr; 16(2):026021. PubMed ID: 30620927
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A switching regime model for the EMG-based control of a robot arm.
    Artemiadis PK; Kyriakopoulos KJ
    IEEE Trans Syst Man Cybern B Cybern; 2011 Feb; 41(1):53-63. PubMed ID: 20403787
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An EMG-based robot control scheme robust to time-varying EMG signal features.
    Artemiadis PK; Kyriakopoulos KJ
    IEEE Trans Inf Technol Biomed; 2010 May; 14(3):582-8. PubMed ID: 20172839
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparison of tongue interface with keyboard for control of an assistive robotic arm.
    Struijk LNSA; Lontis R
    IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():925-928. PubMed ID: 28813939
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Automatic removal of eye-movement and blink artifacts from EEG signals.
    Gao JF; Yang Y; Lin P; Wang P; Zheng CX
    Brain Topogr; 2010 Mar; 23(1):105-14. PubMed ID: 20039116
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Feature selection in classification of eye movements using electrooculography for activity recognition.
    Mala S; Latha K
    Comput Math Methods Med; 2014; 2014():713818. PubMed ID: 25574185
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Single-Channel EOG-Based Speller.
    He S; Li Y
    IEEE Trans Neural Syst Rehabil Eng; 2017 Nov; 25(11):1978-1987. PubMed ID: 28641264
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An EEG/EMG/EOG-Based Multimodal Human-Machine Interface to Real-Time Control of a Soft Robot Hand.
    Zhang J; Wang B; Zhang C; Xiao Y; Wang MY
    Front Neurorobot; 2019; 13():7. PubMed ID: 30983986
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.