BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

269 related articles for article (PubMed ID: 24021669)

  • 1. Massively parallel sequencing: the new frontier of hematologic genomics.
    Johnsen JM; Nickerson DA; Reiner AP
    Blood; 2013 Nov; 122(19):3268-75. PubMed ID: 24021669
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The complete genome of an individual by massively parallel DNA sequencing.
    Wheeler DA; Srinivasan M; Egholm M; Shen Y; Chen L; McGuire A; He W; Chen YJ; Makhijani V; Roth GT; Gomes X; Tartaro K; Niazi F; Turcotte CL; Irzyk GP; Lupski JR; Chinault C; Song XZ; Liu Y; Yuan Y; Nazareth L; Qin X; Muzny DM; Margulies M; Weinstock GM; Gibbs RA; Rothberg JM
    Nature; 2008 Apr; 452(7189):872-6. PubMed ID: 18421352
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Improvements and impacts of GRCh38 human reference on high throughput sequencing data analysis.
    Guo Y; Dai Y; Yu H; Zhao S; Samuels DC; Shyr Y
    Genomics; 2017 Mar; 109(2):83-90. PubMed ID: 28131802
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An Overview of DNA Analytical Methods.
    Arboleda VA; Xian RR
    Methods Mol Biol; 2019; 1897():385-402. PubMed ID: 30539459
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Genomic Analysis in the Age of Human Genome Sequencing.
    Lappalainen T; Scott AJ; Brandt M; Hall IM
    Cell; 2019 Mar; 177(1):70-84. PubMed ID: 30901550
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Representing genetic variation with synthetic DNA standards.
    Deveson IW; Chen WY; Wong T; Hardwick SA; Andersen SB; Nielsen LK; Mattick JS; Mercer TR
    Nat Methods; 2016 Sep; 13(9):784-91. PubMed ID: 27502217
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Next-Generation Sequencing and Emerging Technologies.
    Kumar KR; Cowley MJ; Davis RL
    Semin Thromb Hemost; 2019 Oct; 45(7):661-673. PubMed ID: 31096307
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Human Genome Sequencing at the Population Scale: A Primer on High-Throughput DNA Sequencing and Analysis.
    Goldfeder RL; Wall DP; Khoury MJ; Ioannidis JPA; Ashley EA
    Am J Epidemiol; 2017 Oct; 186(8):1000-1009. PubMed ID: 29040395
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Genome sequencing in the clinic: the past, present, and future of genomic medicine.
    Prokop JW; May T; Strong K; Bilinovich SM; Bupp C; Rajasekaran S; Worthey EA; Lazar J
    Physiol Genomics; 2018 Aug; 50(8):563-579. PubMed ID: 29727589
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Practical Guide for Structural Variation Detection in the Human Genome.
    Yang L
    Curr Protoc Hum Genet; 2020 Sep; 107(1):e103. PubMed ID: 32813322
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Next generation sequencing in cancer: opportunities and challenges for precision cancer medicine.
    Paolillo C; Londin E; Fortina P
    Scand J Clin Lab Invest Suppl; 2016; 245():S84-91. PubMed ID: 27542004
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Genome structural variation discovery and genotyping.
    Alkan C; Coe BP; Eichler EE
    Nat Rev Genet; 2011 May; 12(5):363-76. PubMed ID: 21358748
    [TBL] [Abstract][Full Text] [Related]  

  • 13. ACMG clinical laboratory standards for next-generation sequencing.
    Rehm HL; Bale SJ; Bayrak-Toydemir P; Berg JS; Brown KK; Deignan JL; Friez MJ; Funke BH; Hegde MR; Lyon E;
    Genet Med; 2013 Sep; 15(9):733-47. PubMed ID: 23887774
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Massively parallel sequencing of micro-manipulated cells targeting a comprehensive panel of disease-causing genes: A comparative evaluation of upstream whole-genome amplification methods.
    Deleye L; Gansemans Y; De Coninck D; Van Nieuwerburgh F; Deforce D
    PLoS One; 2018; 13(4):e0196334. PubMed ID: 29698522
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A decade of structural variants: description, history and methods to detect structural variation.
    Escaramís G; Docampo E; Rabionet R
    Brief Funct Genomics; 2015 Sep; 14(5):305-14. PubMed ID: 25877305
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Long-read human genome sequencing and its applications.
    Logsdon GA; Vollger MR; Eichler EE
    Nat Rev Genet; 2020 Oct; 21(10):597-614. PubMed ID: 32504078
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sensitivity to copy number variation analysis in single cell genomics.
    Tu J; Zhou Y; Tao Y; Lu N; Yang Y; Lu Z
    Gene; 2022 Jan; 808():145995. PubMed ID: 34627941
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Advancements in Next-Generation Sequencing.
    Levy SE; Myers RM
    Annu Rev Genomics Hum Genet; 2016 Aug; 17():95-115. PubMed ID: 27362342
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Computational methods for detecting copy number variations in cancer genome using next generation sequencing: principles and challenges.
    Liu B; Morrison CD; Johnson CS; Trump DL; Qin M; Conroy JC; Wang J; Liu S
    Oncotarget; 2013 Nov; 4(11):1868-81. PubMed ID: 24240121
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Computational methods and resources for the interpretation of genomic variants in cancer.
    Tian R; Basu MK; Capriotti E
    BMC Genomics; 2015; 16 Suppl 8(Suppl 8):S7. PubMed ID: 26111056
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.