These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
101 related articles for article (PubMed ID: 24021893)
1. Relationships between the mechanomyographic amplitude patterns of response and concentric isokinetic fatiguing tasks of the leg extensors. Cooper MA; Herda TJ; Vardiman JP; Gallagher PM; Fry AC Physiol Meas; 2013 Oct; 34(10):1293-301. PubMed ID: 24021893 [TBL] [Abstract][Full Text] [Related]
2. Muscle-related differences in mechanomyography frequency-force relationships are model dependent. Herda TJ; Cooper MA Med Biol Eng Comput; 2015 Aug; 53(8):689-97. PubMed ID: 25805064 [TBL] [Abstract][Full Text] [Related]
3. The influence of myosin heavy chain isoform content on mechanical behavior of the vastus lateralis in vivo. Trevino MA; Herda TJ; Fry AC; Gallagher PM; Vardiman JP; Mosier EM; Miller JD J Electromyogr Kinesiol; 2016 Jun; 28():143-51. PubMed ID: 27152756 [TBL] [Abstract][Full Text] [Related]
4. Relationships between skinfold thickness and electromyographic and mechanomyographic amplitude recorded during voluntary and non-voluntary muscle actions. Cooper MA; Herda TJ; Vardiman JP; Gallagher PM; Fry AC J Electromyogr Kinesiol; 2014 Apr; 24(2):207-13. PubMed ID: 24444832 [TBL] [Abstract][Full Text] [Related]
5. Electromyographic, but not mechanomyographic amplitude-force relationships, distinguished differences in voluntary activation capabilities between individuals. Herda TJ; Cooper MA J Electromyogr Kinesiol; 2013 Apr; 23(2):356-61. PubMed ID: 23318003 [TBL] [Abstract][Full Text] [Related]
6. Muscle-related differences in mechanomyography–force relationships are model-dependent. Cooper MA; Herda TJ Muscle Nerve; 2014 Feb; 49(2):202-8. PubMed ID: 23649718 [TBL] [Abstract][Full Text] [Related]
7. Mechanomyographic and electromyographic responses to repeated concentric muscle actions of the quadriceps femoris. Ebersole KT; O'Connor KM; Wier AP J Electromyogr Kinesiol; 2006 Apr; 16(2):149-57. PubMed ID: 16139522 [TBL] [Abstract][Full Text] [Related]
9. Time and frequency domain responses of the mechanomyogram and electromyogram during isometric ramp contractions: a comparison of the short-time Fourier and continuous wavelet transforms. Ryan ED; Cramer JT; Egan AD; Hartman MJ; Herda TJ J Electromyogr Kinesiol; 2008 Feb; 18(1):54-67. PubMed ID: 17070700 [TBL] [Abstract][Full Text] [Related]
10. Inter-individual variability among the mechanomyographic and electromyographic amplitude and mean power frequency responses during isometric ramp muscle actions. Ryan ED; Cramer JT; Housh TJ; Beck TW; Herda TJ; Hartman MJ; Stout JR Electromyogr Clin Neurophysiol; 2007; 47(3):161-73. PubMed ID: 17557649 [TBL] [Abstract][Full Text] [Related]
11. Endurance training alters motor unit activation strategies for the vastus lateralis, yet sex-related differences and relationships with muscle size remain. Sontag SA; Trevino MA; Herda TJ; Sterczala AJ; Miller JD; Parra ME; Dimmick HL; Deckert J Eur J Appl Physiol; 2021 May; 121(5):1367-1377. PubMed ID: 33604695 [TBL] [Abstract][Full Text] [Related]
12. Influence of Pennation Angle and Muscle Thickness on Mechanomyographic Amplitude-Torque Relationships and Sex-Related Differences in the Vastus Lateralis. Trevino M; Perez S; Sontag S; Olmos A; Jeon S; Richardson L J Funct Morphol Kinesiol; 2023 May; 8(2):. PubMed ID: 37218849 [TBL] [Abstract][Full Text] [Related]
13. An examination of mechanomyographic signal stationarity during concentric isokinetic, eccentric isokinetic and isometric muscle actions. Beck TW; Defreitas JM; Stock MS; Dillon MA Physiol Meas; 2010 Mar; 31(3):339-61. PubMed ID: 20130345 [TBL] [Abstract][Full Text] [Related]
14. Mechanomyographic amplitude and mean power frequency responses during isometric ramp vs. step muscle actions. Ryan ED; Beck TW; Herda TJ; Hartman MJ; Stout JR; Housh TJ; Cramer JT J Neurosci Methods; 2008 Mar; 168(2):293-305. PubMed ID: 18061275 [TBL] [Abstract][Full Text] [Related]
15. High-Intensity Cycling Training Necessitates Increased Neuromuscular Demand of the Vastus Lateralis During a Fatiguing Contraction. Olmos AA; Sontag SA; Sterczala AJ; Parra ME; Dimmick HL; Miller JD; Deckert JA; Herda TJ; Trevino MA Res Q Exerc Sport; 2024 Jun; 95(2):313-324. PubMed ID: 37369135 [No Abstract] [Full Text] [Related]
16. Electromyographic and mechanomyographic responses across repeated maximal isometric and concentric muscle actions of the leg extensors. Camic CL; Housh TJ; Zuniga JM; Russell Hendrix C; Bergstrom HC; Traylor DA; Schmidt RJ; Johnson GO J Electromyogr Kinesiol; 2013 Apr; 23(2):342-8. PubMed ID: 23102832 [TBL] [Abstract][Full Text] [Related]
17. A noninvasive test for estimating myosin heavy chain of the vastus lateralis in females with mechanomyography. Sontag SA; Sterczala AJ; Miller JD; Deckert JA; Olmos AA; Parra ME; Dimmick HL; Gallagher PM; Fry AC; Herda TJ; Trevino MA Med Eng Phys; 2023 Jan; 111():103946. PubMed ID: 36792240 [TBL] [Abstract][Full Text] [Related]
18. Linearity and reliability of the mechanomyographic amplitude versus dynamic torque relationships for the superficial quadriceps femoris muscles. Stock MS; Beck TW; Defreitas JM; Dillon MA Muscle Nerve; 2010 Mar; 41(3):342-9. PubMed ID: 19813206 [TBL] [Abstract][Full Text] [Related]
19. The influence of chronic training status on the mechanical behavior of the vastus lateralis during repetitive trapezoidal contractions. Olmos AA; Herda TJ; Sontag SA; Trevino MA J Musculoskelet Neuronal Interact; 2022 Jun; 22(2):161-171. PubMed ID: 35642696 [TBL] [Abstract][Full Text] [Related]
20. Power output, mechanomyographic, and electromyographic responses to maximal, concentric, isokinetic muscle actions in men and women. Cramer JT; Housh TJ; Weir JP; Johnson GO; Ebersole KT; Perry SR; Bull AJ J Strength Cond Res; 2002 Aug; 16(3):399-408. PubMed ID: 12173954 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]