These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
443 related articles for article (PubMed ID: 24021912)
1. Metabolic depression during warm torpor in the Golden spiny mouse (Acomys russatus) does not affect mitochondrial respiration and hydrogen peroxide release. Grimpo K; Kutschke M; Kastl A; Meyer CW; Heldmaier G; Exner C; Jastroch M Comp Biochem Physiol A Mol Integr Physiol; 2014 Jan; 167():7-14. PubMed ID: 24021912 [TBL] [Abstract][Full Text] [Related]
2. Depression of mitochondrial respiration during daily torpor of the Djungarian hamster, Phodopus sungorus, is specific for liver and correlates with body temperature. Kutschke M; Grimpo K; Kastl A; Schneider S; Heldmaier G; Exner C; Jastroch M Comp Biochem Physiol A Mol Integr Physiol; 2013 Apr; 164(4):584-9. PubMed ID: 23376108 [TBL] [Abstract][Full Text] [Related]
3. Mitochondrial metabolic suppression in fasting and daily torpor: consequences for reactive oxygen species production. Brown JC; Staples JF Physiol Biochem Zool; 2011; 84(5):467-80. PubMed ID: 21897084 [TBL] [Abstract][Full Text] [Related]
4. That's hot: golden spiny mice display torpor even at high ambient temperatures. Grimpo K; Legler K; Heldmaier G; Exner C J Comp Physiol B; 2013 May; 183(4):567-81. PubMed ID: 23212435 [TBL] [Abstract][Full Text] [Related]
5. Regulation of succinate-fuelled mitochondrial respiration in liver and skeletal muscle of hibernating thirteen-lined ground squirrels. Brown JC; Chung DJ; Cooper AN; Staples JF J Exp Biol; 2013 May; 216(Pt 9):1736-43. PubMed ID: 23348944 [TBL] [Abstract][Full Text] [Related]
6. Mitochondrial metabolic suppression and reactive oxygen species production in liver and skeletal muscle of hibernating thirteen-lined ground squirrels. Brown JC; Chung DJ; Belgrave KR; Staples JF Am J Physiol Regul Integr Comp Physiol; 2012 Jan; 302(1):R15-28. PubMed ID: 21993528 [TBL] [Abstract][Full Text] [Related]
7. Natural hypometabolism during hibernation and daily torpor in mammals. Heldmaier G; Ortmann S; Elvert R Respir Physiol Neurobiol; 2004 Aug; 141(3):317-29. PubMed ID: 15288602 [TBL] [Abstract][Full Text] [Related]
8. Hypothermia versus torpor in response to cold stress in the native Australian mouse Pseudomys hermannsburgensis and the introduced house mouse Mus musculus. Tomlinson S; Withers PC; Cooper C Comp Biochem Physiol A Mol Integr Physiol; 2007 Nov; 148(3):645-50. PubMed ID: 17826203 [TBL] [Abstract][Full Text] [Related]
9. Mitochondrial metabolism in hibernation and daily torpor: a review. Staples JF; Brown JC J Comp Physiol B; 2008 Sep; 178(7):811-27. PubMed ID: 18551297 [TBL] [Abstract][Full Text] [Related]
10. Mitochondrial metabolism during daily torpor in the dwarf Siberian hamster: role of active regulated changes and passive thermal effects. Brown JC; Gerson AR; Staples JF Am J Physiol Regul Integr Comp Physiol; 2007 Nov; 293(5):R1833-45. PubMed ID: 17804585 [TBL] [Abstract][Full Text] [Related]
11. Defending body mass during food restriction in Acomys russatus: a desert rodent that does not store food. Gutman R; Choshniak I; Kronfeld-Schor N Am J Physiol Regul Integr Comp Physiol; 2006 Apr; 290(4):R881-91. PubMed ID: 16284091 [TBL] [Abstract][Full Text] [Related]
12. Differential posttranslational modification of mitochondrial enzymes corresponds with metabolic suppression during hibernation. Mathers KE; Staples JF Am J Physiol Regul Integr Comp Physiol; 2019 Aug; 317(2):R262-R269. PubMed ID: 31067076 [TBL] [Abstract][Full Text] [Related]
13. Adaptive mechanisms during food restriction in Acomys russatus: the use of torpor for desert survival. Ehrhardt N; Heldmaier G; Exner C J Comp Physiol B; 2005 Apr; 175(3):193-200. PubMed ID: 15742195 [TBL] [Abstract][Full Text] [Related]
14. Mitochondrial metabolism during fasting-induced daily torpor in mice. Brown JC; Staples JF Biochim Biophys Acta; 2010 Apr; 1797(4):476-86. PubMed ID: 20080074 [TBL] [Abstract][Full Text] [Related]
15. Mitochondrial proton leak rates in the slow, oxidative myotomal muscle and liver of the endothermic shortfin mako shark (Isurus oxyrinchus) and the ectothermic blue shark (Prionace glauca) and leopard shark (Triakis semifasciata). Duong CA; Sepulveda CA; Graham JB; Dickson KA J Exp Biol; 2006 Jul; 209(Pt 14):2678-85. PubMed ID: 16809458 [TBL] [Abstract][Full Text] [Related]
16. Decreased hydrogen peroxide production and mitochondrial respiration in skeletal muscle but not cardiac muscle of the green-striped burrowing frog, a natural model of muscle disuse. Reilly BD; Hickey AJ; Cramp RL; Franklin CE J Exp Biol; 2014 Apr; 217(Pt 7):1087-93. PubMed ID: 24311816 [TBL] [Abstract][Full Text] [Related]
17. Reversible depression of oxygen consumption in isolated liver mitochondria during hibernation. Martin SL; Maniero GD; Carey C; Hand SC Physiol Biochem Zool; 1999; 72(3):255-64. PubMed ID: 10222320 [TBL] [Abstract][Full Text] [Related]
18. Mitochondrial metabolism in hibernation: metabolic suppression, temperature effects, and substrate preferences. Muleme HM; Walpole AC; Staples JF Physiol Biochem Zool; 2006; 79(3):474-83. PubMed ID: 16691514 [TBL] [Abstract][Full Text] [Related]
19. Changes in the mitochondrial phosphoproteome during mammalian hibernation. Chung DJ; Szyszka B; Brown JC; Hüner NP; Staples JF Physiol Genomics; 2013 May; 45(10):389-99. PubMed ID: 23572536 [TBL] [Abstract][Full Text] [Related]
20. Metabolic suppression in mammalian hibernation: the role of mitochondria. Staples JF J Exp Biol; 2014 Jun; 217(Pt 12):2032-6. PubMed ID: 24920833 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]