These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 24022023)

  • 1. Extraction of events and temporal expressions from clinical narratives.
    Jindal P; Roth D
    J Biomed Inform; 2013 Dec; 46 Suppl():S13-S19. PubMed ID: 24022023
    [TBL] [Abstract][Full Text] [Related]  

  • 2. MedTime: a temporal information extraction system for clinical narratives.
    Lin YK; Chen H; Brown RA
    J Biomed Inform; 2013 Dec; 46 Suppl():S20-S28. PubMed ID: 23911344
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Normalization of relative and incomplete temporal expressions in clinical narratives.
    Sun W; Rumshisky A; Uzuner O
    J Am Med Inform Assoc; 2015 Sep; 22(5):1001-8. PubMed ID: 25868462
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A new algorithmic approach for the extraction of temporal associations from clinical narratives with an application to medical product safety surveillance reports.
    Wang W; Kreimeyer K; Woo EJ; Ball R; Foster M; Pandey A; Scott J; Botsis T
    J Biomed Inform; 2016 Aug; 62():78-89. PubMed ID: 27327528
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Annotating temporal information in clinical narratives.
    Sun W; Rumshisky A; Uzuner O
    J Biomed Inform; 2013 Dec; 46 Suppl(0):S5-S12. PubMed ID: 23872518
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An end-to-end system to identify temporal relation in discharge summaries: 2012 i2b2 challenge.
    Xu Y; Wang Y; Liu T; Tsujii J; Chang EI
    J Am Med Inform Assoc; 2013; 20(5):849-58. PubMed ID: 23467472
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Combining rules and machine learning for extraction of temporal expressions and events from clinical narratives.
    Kovacevic A; Dehghan A; Filannino M; Keane JA; Nenadic G
    J Am Med Inform Assoc; 2013; 20(5):859-66. PubMed ID: 23605114
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Data-Driven Information Extraction from Chinese Electronic Medical Records.
    Xu D; Zhang M; Zhao T; Ge C; Gao W; Wei J; Zhu KQ
    PLoS One; 2015; 10(8):e0136270. PubMed ID: 26295801
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Eventual situations for timeline extraction from clinical reports.
    Grouin C; Grabar N; Hamon T; Rosset S; Tannier X; Zweigenbaum P
    J Am Med Inform Assoc; 2013; 20(5):820-7. PubMed ID: 23571851
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A flexible framework for recognizing events, temporal expressions, and temporal relations in clinical text.
    Roberts K; Rink B; Harabagiu SM
    J Am Med Inform Assoc; 2013; 20(5):867-75. PubMed ID: 23686936
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Combining glass box and black box evaluations in the identification of heart disease risk factors and their temporal relations from clinical records.
    Grouin C; Moriceau V; Zweigenbaum P
    J Biomed Inform; 2015 Dec; 58 Suppl(Suppl):S133-S142. PubMed ID: 26142870
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ensemble method-based extraction of medication and related information from clinical texts.
    Kim Y; Meystre SM
    J Am Med Inform Assoc; 2020 Jan; 27(1):31-38. PubMed ID: 31282932
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Temporal relation discovery between events and temporal expressions identified in clinical narrative.
    Cheng Y; Anick P; Hong P; Xue N
    J Biomed Inform; 2013 Dec; 46 Suppl():S48-S53. PubMed ID: 24076508
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mining heart disease risk factors in clinical text with named entity recognition and distributional semantic models.
    Urbain J
    J Biomed Inform; 2015 Dec; 58 Suppl(Suppl):S143-S149. PubMed ID: 26305514
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A deep learning model incorporating part of speech and self-matching attention for named entity recognition of Chinese electronic medical records.
    Cai X; Dong S; Hu J
    BMC Med Inform Decis Mak; 2019 Apr; 19(Suppl 2):65. PubMed ID: 30961622
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Entity recognition from clinical texts via recurrent neural network.
    Liu Z; Yang M; Wang X; Chen Q; Tang B; Wang Z; Xu H
    BMC Med Inform Decis Mak; 2017 Jul; 17(Suppl 2):67. PubMed ID: 28699566
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Chronology of your health events: approaches to extracting temporal relations from medical narratives.
    Uzuner Ö; Stubbs A; Sun W
    J Biomed Inform; 2013 Dec; 46 Suppl(0):S1-S4. PubMed ID: 24286753
    [No Abstract]   [Full Text] [Related]  

  • 18. TEMPTING system: a hybrid method of rule and machine learning for temporal relation extraction in patient discharge summaries.
    Chang YC; Dai HJ; Wu JC; Chen JM; Tsai RT; Hsu WL
    J Biomed Inform; 2013 Dec; 46 Suppl():S54-S62. PubMed ID: 24060600
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Obtaining Knowledge in Pathology Reports Through a Natural Language Processing Approach With Classification, Named-Entity Recognition, and Relation-Extraction Heuristics.
    Oliwa T; Maron SB; Chase LM; Lomnicki S; Catenacci DVT; Furner B; Volchenboum SL
    JCO Clin Cancer Inform; 2019 Aug; 3():1-8. PubMed ID: 31365274
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Challenges in clinical natural language processing for automated disorder normalization.
    Leaman R; Khare R; Lu Z
    J Biomed Inform; 2015 Oct; 57():28-37. PubMed ID: 26187250
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.