BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

297 related articles for article (PubMed ID: 24022366)

  • 1. To bud or not to bud: the RET perspective in CAKUT.
    Davis TK; Hoshi M; Jain S
    Pediatr Nephrol; 2014 Apr; 29(4):597-608. PubMed ID: 24022366
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Traditional and targeted exome sequencing reveals common, rare and novel functional deleterious variants in RET-signaling complex in a cohort of living US patients with urinary tract malformations.
    Chatterjee R; Ramos E; Hoffman M; VanWinkle J; Martin DR; Davis TK; Hoshi M; Hmiel SP; Beck A; Hruska K; Coplen D; Liapis H; Mitra R; Druley T; Austin P; Jain S
    Hum Genet; 2012 Nov; 131(11):1725-38. PubMed ID: 22729463
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Novel mechanisms of early upper and lower urinary tract patterning regulated by RetY1015 docking tyrosine in mice.
    Hoshi M; Batourina E; Mendelsohn C; Jain S
    Development; 2012 Jul; 139(13):2405-15. PubMed ID: 22627285
    [TBL] [Abstract][Full Text] [Related]  

  • 4. ASH2L Controls Ureteric Bud Morphogenesis through the Regulation of RET/GFRA1 Signaling Activity in a Mouse Model.
    Zhao Z; Dai X; Jiang G; Lin F
    J Am Soc Nephrol; 2023 Jun; 34(6):988-1002. PubMed ID: 36758123
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Critical and distinct roles for key RET tyrosine docking sites in renal development.
    Jain S; Encinas M; Johnson EM; Milbrandt J
    Genes Dev; 2006 Feb; 20(3):321-33. PubMed ID: 16452504
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hirschsprung disease and congenital anomalies of the kidney and urinary tract (CAKUT): a novel syndromic association.
    Prato AP; Musso M; Ceccherini I; Mattioli G; Giunta C; Ghiggeri GM; Jasonni V
    Medicine (Baltimore); 2009 Mar; 88(2):83-90. PubMed ID: 19282698
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reciprocal Spatiotemporally Controlled Apoptosis Regulates Wolffian Duct Cloaca Fusion.
    Hoshi M; Reginensi A; Joens MS; Fitzpatrick JAJ; McNeill H; Jain S
    J Am Soc Nephrol; 2018 Mar; 29(3):775-783. PubMed ID: 29326158
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Stage specific requirement of Gfrα1 in the ureteric epithelium during kidney development.
    Keefe Davis T; Hoshi M; Jain S
    Mech Dev; 2013; 130(9-10):506-18. PubMed ID: 23542432
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The many faces of RET dysfunction in kidney.
    Jain S
    Organogenesis; 2009 Oct; 5(4):177-90. PubMed ID: 20539737
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sprouty1 Controls Genitourinary Development via its N-Terminal Tyrosine.
    Vaquero M; Cuesta S; Anerillas C; Altés G; Ribera J; Basson MA; Licht JD; Egea J; Encinas M
    J Am Soc Nephrol; 2019 Aug; 30(8):1398-1411. PubMed ID: 31300484
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Crosstalk between Jagged1 and GDNF/Ret/GFRalpha1 signalling regulates ureteric budding and branching.
    Kuure S; Sainio K; Vuolteenaho R; Ilves M; Wartiovaara K; Immonen T; Kvist J; Vainio S; Sariola H
    Mech Dev; 2005 Jun; 122(6):765-80. PubMed ID: 15905075
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Congenital anomalies of the kidney and urinary tract: an embryogenetic review.
    dos Santos Junior AC; de Miranda DM; Simões e Silva AC
    Birth Defects Res C Embryo Today; 2014 Dec; 102(4):374-81. PubMed ID: 25420794
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Kidney development in the absence of Gdnf and Spry1 requires Fgf10.
    Michos O; Cebrian C; Hyink D; Grieshammer U; Williams L; D'Agati V; Licht JD; Martin GR; Costantini F
    PLoS Genet; 2010 Jan; 6(1):e1000809. PubMed ID: 20084103
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mild recessive mutations in six Fraser syndrome-related genes cause isolated congenital anomalies of the kidney and urinary tract.
    Kohl S; Hwang DY; Dworschak GC; Hilger AC; Saisawat P; Vivante A; Stajic N; Bogdanovic R; Reutter HM; Kehinde EO; Tasic V; Hildebrandt F
    J Am Soc Nephrol; 2014 Sep; 25(9):1917-22. PubMed ID: 24700879
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Genetics of congenital anomalies of the kidney and urinary tract.
    Song R; Yosypiv IV
    Pediatr Nephrol; 2011 Mar; 26(3):353-64. PubMed ID: 20798957
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Organotypic specificity of key RET adaptor-docking sites in the pathogenesis of neurocristopathies and renal malformations in mice.
    Jain S; Knoten A; Hoshi M; Wang H; Vohra B; Heuckeroth RO; Milbrandt J
    J Clin Invest; 2010 Mar; 120(3):778-90. PubMed ID: 20160347
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ret and Etv4 Promote Directed Movements of Progenitor Cells during Renal Branching Morphogenesis.
    Riccio P; Cebrian C; Zong H; Hippenmeyer S; Costantini F
    PLoS Biol; 2016 Feb; 14(2):e1002382. PubMed ID: 26894589
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Novel Insights into the Pathogenesis of Monogenic Congenital Anomalies of the Kidney and Urinary Tract.
    van der Ven AT; Vivante A; Hildebrandt F
    J Am Soc Nephrol; 2018 Jan; 29(1):36-50. PubMed ID: 29079659
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Downregulation of Spry-1, an inhibitor of GDNF/Ret, causes angiotensin II-induced ureteric bud branching.
    Yosypiv IV; Boh MK; Spera MA; El-Dahr SS
    Kidney Int; 2008 Nov; 74(10):1287-93. PubMed ID: 18650792
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Maternal risk factors for congenital anomalies of the kidney and urinary tract: A case-control study.
    Boato RT; Aguiar MB; Mak RH; Colosimo EA; Simões E Silva AC; Oliveira EA
    J Pediatr Urol; 2023 Apr; 19(2):199.e1-199.e11. PubMed ID: 36535837
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.