These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

207 related articles for article (PubMed ID: 24022515)

  • 1. Fabrication, operation and flow visualization in surface-acoustic-wave-driven acoustic-counterflow microfluidics.
    Travagliati M; Shilton R; Beltram F; Cecchini M
    J Vis Exp; 2013 Aug; (78):. PubMed ID: 24022515
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Surface acoustic wave induced particle manipulation in a PDMS channel--principle concepts for continuous flow applications.
    Johansson L; Enlund J; Johansson S; Katardjiev I; Yantchev V
    Biomed Microdevices; 2012 Apr; 14(2):279-89. PubMed ID: 22076383
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Three-dimensional continuous particle focusing in a microfluidic channel via standing surface acoustic waves (SSAW).
    Shi J; Yazdi S; Lin SC; Ding X; Chiang IK; Sharp K; Huang TJ
    Lab Chip; 2011 Jul; 11(14):2319-24. PubMed ID: 21709881
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Acoustofluidics and whole-blood manipulation in surface acoustic wave counterflow devices.
    Travagliati M; Shilton RJ; Pagliazzi M; Tonazzini I; Beltram F; Cecchini M
    Anal Chem; 2014 Nov; 86(21):10633-8. PubMed ID: 25260018
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fabrication of Nanoheight Channels Incorporating Surface Acoustic Wave Actuation via Lithium Niobate for Acoustic Nanofluidics.
    Zhang N; Friend J
    J Vis Exp; 2020 Feb; (156):. PubMed ID: 32090998
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Continuous particle separation in a microfluidic channel via standing surface acoustic waves (SSAW).
    Shi J; Huang H; Stratton Z; Huang Y; Huang TJ
    Lab Chip; 2009 Dec; 9(23):3354-9. PubMed ID: 19904400
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The complexity of surface acoustic wave fields used for microfluidic applications.
    Weser R; Winkler A; Weihnacht M; Menzel S; Schmidt H
    Ultrasonics; 2020 Aug; 106():106160. PubMed ID: 32334142
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Miniaturized Lab-on-a-Disc (miniLOAD).
    Glass NR; Shilton RJ; Chan PP; Friend JR; Yeo LY
    Small; 2012 Jun; 8(12):1881-8. PubMed ID: 22488691
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fabrication of Surface Acoustic Wave Devices on Lithium Niobate.
    Mei J; Zhang N; Friend J
    J Vis Exp; 2020 Jun; (160):. PubMed ID: 32628169
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Phononic crystal structures for acoustically driven microfluidic manipulations.
    Wilson R; Reboud J; Bourquin Y; Neale SL; Zhang Y; Cooper JM
    Lab Chip; 2011 Jan; 11(2):323-8. PubMed ID: 21057690
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Planar chip device for PCR and hybridization with surface acoustic wave pump.
    Guttenberg Z; Muller H; Habermüller H; Geisbauer A; Pipper J; Felbel J; Kielpinski M; Scriba J; Wixforth A
    Lab Chip; 2005 Mar; 5(3):308-17. PubMed ID: 15726207
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Flow profiling of a surface-acoustic-wave nanopump.
    Guttenberg Z; Rathgeber A; Keller S; Rädler JO; Wixforth A; Kostur M; Schindler M; Talkner P
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Nov; 70(5 Pt 2):056311. PubMed ID: 15600757
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Separation of platelets from whole blood using standing surface acoustic waves in a microchannel.
    Nam J; Lim H; Kim D; Shin S
    Lab Chip; 2011 Oct; 11(19):3361-4. PubMed ID: 21842070
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Simple and inexpensive micromachined aluminum microfluidic devices for acoustic focusing of particles and cells.
    Gautam GP; Burger T; Wilcox A; Cumbo MJ; Graves SW; Piyasena ME
    Anal Bioanal Chem; 2018 May; 410(14):3385-3394. PubMed ID: 29651523
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Acoustic streaming of microparticles using graphene-based interdigital transducers.
    Mišeikis V; Shilton RJ; Travagliati M; Agostini M; Cecchini M; Piazza V; Coletti C
    Nanotechnology; 2021 Jun; 32(37):. PubMed ID: 34030151
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Microscale anechoic architecture: acoustic diffusers for ultra low power microparticle separation via traveling surface acoustic waves.
    Behrens J; Langelier S; Rezk AR; Lindner G; Yeo LY; Friend JR
    Lab Chip; 2015 Jan; 15(1):43-6. PubMed ID: 25343424
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Measuring Velocity, Attenuation, and Reflection in Surface Acoustic Wave Cavities Through Acoustic Fabry-Pérot Spectra.
    Kelly L; Berini P; Bao X
    IEEE Trans Ultrason Ferroelectr Freq Control; 2022 Apr; 69(4):1542-1548. PubMed ID: 35081023
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Radiation dominated acoustophoresis driven by surface acoustic waves.
    Guo J; Kang Y; Ai Y
    J Colloid Interface Sci; 2015 Oct; 455():203-11. PubMed ID: 26070191
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Numerical study of acoustophoretic motion of particles in a PDMS microchannel driven by surface acoustic waves.
    Nama N; Barnkob R; Mao Z; Kähler CJ; Costanzo F; Huang TJ
    Lab Chip; 2015 Jun; 15(12):2700-9. PubMed ID: 26001199
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Microfluidic integrated acoustic waving for manipulation of cells and molecules.
    Barani A; Paktinat H; Janmaleki M; Mohammadi A; Mosaddegh P; Fadaei-Tehrani A; Sanati-Nezhad A
    Biosens Bioelectron; 2016 Nov; 85():714-725. PubMed ID: 27262557
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.