These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 24022749)

  • 1. Comprehensive transcriptional profiling of NaHCO
    Wang C; Gao C; Wang L; Zheng L; Yang C; Wang Y
    Plant Mol Biol; 2013 Sep; ():. PubMed ID: 24022749
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Transcriptomic Analysis of Cadmium Stressed
    Wang PL; Lei XJ; Wang YY; Liu BC; Wang DN; Liu ZY; Gao CQ
    Front Plant Sci; 2022; 13():843725. PubMed ID: 35519810
    [TBL] [Abstract][Full Text] [Related]  

  • 3.
    Lei X; Tan B; Liu Z; Wu J; Lv J; Gao C
    Front Plant Sci; 2021; 12():653791. PubMed ID: 34079567
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Expression profiling of salinity-alkali stress responses by large-scale expressed sequence tag analysis in Tamarix hispid.
    Gao C; Wang Y; Liu G; Yang C; Jiang J; Li H
    Plant Mol Biol; 2008 Feb; 66(3):245-58. PubMed ID: 18058243
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Identification of genes responsive to salt stress on Tamarix hispida roots.
    Li H; Wang Y; Jiang J; Liu G; Gao C; Yang C
    Gene; 2009 Mar; 433(1-2):65-71. PubMed ID: 19146931
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A ThDREB gene from Tamarix hispida improved the salt and drought tolerance of transgenic tobacco and T. hispida.
    Yang G; Yu L; Zhang K; Zhao Y; Guo Y; Gao C
    Plant Physiol Biochem; 2017 Apr; 113():187-197. PubMed ID: 28222350
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cotton transcriptome analysis reveals novel biological pathways that eliminate reactive oxygen species (ROS) under sodium bicarbonate (NaHCO
    Fan Y; Lu X; Chen X; Wang J; Wang D; Wang S; Guo L; Rui C; Zhang Y; Cui R; Malik WA; Wang Q; Chen C; Yu JZ; Ye W
    Genomics; 2021 May; 113(3):1157-1169. PubMed ID: 33689783
    [TBL] [Abstract][Full Text] [Related]  

  • 8.
    Mijiti M; Wang Y; Wang L; Habuding X
    Plants (Basel); 2022 Oct; 11(19):. PubMed ID: 36235512
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Identification and Analysis of NaHCO
    Zhang J; Wang J; Jiang W; Liu J; Yang S; Gai J; Li Y
    Front Plant Sci; 2016; 7():1842. PubMed ID: 28018382
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An ERF transcription factor from Tamarix hispida, ThCRF1, can adjust osmotic potential and reactive oxygen species scavenging capability to improve salt tolerance.
    Qin L; Wang L; Guo Y; Li Y; Ümüt H; Wang Y
    Plant Sci; 2017 Dec; 265():154-166. PubMed ID: 29223337
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The multilayered hierarchical gene regulatory network reveals interaction of transcription factors in response to cadmium in Tamarix hispida roots.
    Xie Q; Wang Y; Wang D; Li J; Liu B; Liu Z; Wang P; Zhang H; Yang K; Gao C
    Tree Physiol; 2023 Apr; 43(4):630-642. PubMed ID: 36579818
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Overexpression of ThSAP30BP from Tamarix hispida improves salt tolerance.
    Liu Z; Lei X; Wang P; Wang Y; Lv J; Li X; Gao C
    Plant Physiol Biochem; 2020 Jan; 146():124-132. PubMed ID: 31743857
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transcriptome profiling reveals multiple regulatory pathways of Tamarix chinensis in response to salt stress.
    Li R; Fu R; Li M; Song Y; Li J; Chen C; Gu Y; Liang X; Nie W; Ma L; Wang X; Zhang H; Zhang H
    Plant Cell Rep; 2023 Nov; 42(11):1809-1824. PubMed ID: 37733273
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The bZIP protein from Tamarix hispida, ThbZIP1, is ACGT elements binding factor that enhances abiotic stress signaling in transgenic Arabidopsis.
    Ji X; Liu G; Liu Y; Zheng L; Nie X; Wang Y
    BMC Plant Biol; 2013 Oct; 13():151. PubMed ID: 24093718
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Tamarix hispida zinc finger protein ThZFP1 participates in salt and osmotic stress tolerance by increasing proline content and SOD and POD activities.
    Zang D; Wang C; Ji X; Wang Y
    Plant Sci; 2015 Jun; 235():111-21. PubMed ID: 25900571
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Transcriptome analysis of genes involved in defense against alkaline stress in roots of wild jujube (Ziziphus acidojujuba).
    Guo M; Li S; Tian S; Wang B; Zhao X
    PLoS One; 2017; 12(10):e0185732. PubMed ID: 28976994
    [TBL] [Abstract][Full Text] [Related]  

  • 17. RNA-Seq analysis of Clerodendrum inerme (L.) roots in response to salt stress.
    Xiong Y; Yan H; Liang H; Zhang Y; Guo B; Niu M; Jian S; Ren H; Zhang X; Li Y; Zeng S; Wu K; Zheng F; Teixeira da Silva JA; Ma G
    BMC Genomics; 2019 Oct; 20(1):724. PubMed ID: 31601194
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparative transcriptomic and metabolomic analyses provide insights into the responses to NaCl and Cd stress in Tamarix hispida.
    Xie Q; Liu B; Dong W; Li J; Wang D; Liu Z; Gao C
    Sci Total Environ; 2023 Aug; 884():163889. PubMed ID: 37142042
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Transcriptome analysis and differential gene expression profiling of two contrasting quinoa genotypes in response to salt stress.
    Shi P; Gu M
    BMC Plant Biol; 2020 Dec; 20(1):568. PubMed ID: 33380327
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Vacuolar membrane H
    Wang P; Guo Y; Wang Y; Gao C
    Plant Physiol Biochem; 2020 Dec; 157():370-378. PubMed ID: 33190056
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.