These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

419 related articles for article (PubMed ID: 24022750)

  • 21. Improving accuracies of genomic predictions for drought tolerance in maize by joint modeling of additive and dominance effects in multi-environment trials.
    Dias KODG; Gezan SA; Guimarães CT; Nazarian A; da Costa E Silva L; Parentoni SN; de Oliveira Guimarães PE; de Oliveira Anoni C; Pádua JMV; de Oliveira Pinto M; Noda RW; Ribeiro CAG; de Magalhães JV; Garcia AAF; de Souza JC; Guimarães LJM; Pastina MM
    Heredity (Edinb); 2018 Jul; 121(1):24-37. PubMed ID: 29472694
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Accuracy of estimation of genomic breeding values in pigs using low-density genotypes and imputation.
    Badke YM; Bates RO; Ernst CW; Fix J; Steibel JP
    G3 (Bethesda); 2014 Apr; 4(4):623-31. PubMed ID: 24531728
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Genome-wide association study and prediction of genomic breeding values for fatty-acid composition in Korean Hanwoo cattle using a high-density single-nucleotide polymorphism array.
    Bhuiyan MSA; Kim YK; Kim HJ; Lee DH; Lee SH; Yoon HB; Lee SH
    J Anim Sci; 2018 Sep; 96(10):4063-4075. PubMed ID: 30265318
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Genomic Prediction of Genotype × Environment Interaction Kernel Regression Models.
    Cuevas J; Crossa J; Soberanis V; Pérez-Elizalde S; Pérez-Rodríguez P; Campos GL; Montesinos-López OA; Burgueño J
    Plant Genome; 2016 Nov; 9(3):. PubMed ID: 27902799
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Threshold models for genome-enabled prediction of ordinal categorical traits in plant breeding.
    Montesinos-López OA; Montesinos-López A; Pérez-Rodríguez P; de Los Campos G; Eskridge K; Crossa J
    G3 (Bethesda); 2014 Dec; 5(2):291-300. PubMed ID: 25538102
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Population-tailored mock genome enables genomic studies in species without a reference genome.
    Sabadin F; Carvalho HF; Galli G; Fritsche-Neto R
    Mol Genet Genomics; 2022 Jan; 297(1):33-46. PubMed ID: 34755217
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Phased Genotyping-by-Sequencing Enhances Analysis of Genetic Diversity and Reveals Divergent Copy Number Variants in Maize.
    Manching H; Sengupta S; Hopper KR; Polson SW; Ji Y; Wisser RJ
    G3 (Bethesda); 2017 Jul; 7(7):2161-2170. PubMed ID: 28526729
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Genomic Selection for Ascochyta Blight Resistance in Pea.
    Carpenter MA; Goulden DS; Woods CJ; Thomson SJ; Kenel F; Frew TJ; Cooper RD; Timmerman-Vaughan GM
    Front Plant Sci; 2018; 9():1878. PubMed ID: 30619430
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Whole-genome characterization in pedigreed non-human primates using genotyping-by-sequencing (GBS) and imputation.
    Bimber BN; Raboin MJ; Letaw J; Nevonen KA; Spindel JE; McCouch SR; Cervera-Juanes R; Spindel E; Carbone L; Ferguson B; Vinson A
    BMC Genomics; 2016 Aug; 17(1):676. PubMed ID: 27558348
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Accuracy of genomic selection for alfalfa biomass yield in different reference populations.
    Annicchiarico P; Nazzicari N; Li X; Wei Y; Pecetti L; Brummer EC
    BMC Genomics; 2015 Dec; 16():1020. PubMed ID: 26626170
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Impact of marker ascertainment bias on genomic selection accuracy and estimates of genetic diversity.
    Heslot N; Rutkoski J; Poland J; Jannink JL; Sorrells ME
    PLoS One; 2013; 8(9):e74612. PubMed ID: 24040295
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Hyperspectral Reflectance-Derived Relationship Matrices for Genomic Prediction of Grain Yield in Wheat.
    Krause MR; González-Pérez L; Crossa J; Pérez-Rodríguez P; Montesinos-López O; Singh RP; Dreisigacker S; Poland J; Rutkoski J; Sorrells M; Gore MA; Mondal S
    G3 (Bethesda); 2019 Apr; 9(4):1231-1247. PubMed ID: 30796086
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Genotype Imputation To Improve the Cost-Efficiency of Genomic Selection in Farmed Atlantic Salmon.
    Tsai HY; Matika O; Edwards SM; Antolín-Sánchez R; Hamilton A; Guy DR; Tinch AE; Gharbi K; Stear MJ; Taggart JB; Bron JE; Hickey JM; Houston RD
    G3 (Bethesda); 2017 Apr; 7(4):1377-1383. PubMed ID: 28250015
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Genomic selection for non-key traits in radiata pine when the documented pedigree is corrected using DNA marker information.
    Li Y; Klápště J; Telfer E; Wilcox P; Graham N; Macdonald L; Dungey HS
    BMC Genomics; 2019 Dec; 20(1):1026. PubMed ID: 31881838
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Genomic predictions for economically important traits in Brazilian Braford and Hereford beef cattle using true and imputed genotypes.
    Piccoli ML; Brito LF; Braccini J; Cardoso FF; Sargolzaei M; Schenkel FS
    BMC Genet; 2017 Jan; 18(1):2. PubMed ID: 28100165
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Joint Use of Genome, Pedigree, and Their Interaction with Environment for Predicting the Performance of Wheat Lines in New Environments.
    Howard R; Gianola D; Montesinos-López O; Juliana P; Singh R; Poland J; Shrestha S; Pérez-Rodríguez P; Crossa J; Jarquín D
    G3 (Bethesda); 2019 Sep; 9(9):2925-2934. PubMed ID: 31300481
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Multiple-trait analyses improved the accuracy of genomic prediction and the power of genome-wide association of productivity and climate change-adaptive traits in lodgepole pine.
    Cappa EP; Chen C; Klutsch JG; Sebastian-Azcona J; Ratcliffe B; Wei X; Da Ros L; Ullah A; Liu Y; Benowicz A; Sadoway S; Mansfield SD; Erbilgin N; Thomas BR; El-Kassaby YA
    BMC Genomics; 2022 Jul; 23(1):536. PubMed ID: 35870886
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Increased genomic prediction accuracy in wheat breeding through spatial adjustment of field trial data.
    Lado B; Matus I; Rodríguez A; Inostroza L; Poland J; Belzile F; del Pozo A; Quincke M; Castro M; von Zitzewitz J
    G3 (Bethesda); 2013 Dec; 3(12):2105-14. PubMed ID: 24082033
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Genomic prediction models for traits differing in heritability for soybean, rice, and maize.
    Kaler AS; Purcell LC; Beissinger T; Gillman JD
    BMC Plant Biol; 2022 Feb; 22(1):87. PubMed ID: 35219296
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Usefulness of multiparental populations of maize (Zea mays L.) for genome-based prediction.
    Lehermeier C; Krämer N; Bauer E; Bauland C; Camisan C; Campo L; Flament P; Melchinger AE; Menz M; Meyer N; Moreau L; Moreno-González J; Ouzunova M; Pausch H; Ranc N; Schipprack W; Schönleben M; Walter H; Charcosset A; Schön CC
    Genetics; 2014 Sep; 198(1):3-16. PubMed ID: 25236445
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 21.