These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

223 related articles for article (PubMed ID: 24022892)

  • 1. Substantial reorganization of China's tropical and subtropical forests: based on the permanent plots.
    Zhou G; Houlton BZ; Wang W; Huang W; Xiao Y; Zhang Q; Liu S; Cao M; Wang X; Wang S; Zhang Y; Yan J; Liu J; Tang X; Zhang D
    Glob Chang Biol; 2014 Jan; 20(1):240-50. PubMed ID: 24022892
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A climate change-induced threat to the ecological resilience of a subtropical monsoon evergreen broad-leaved forest in Southern China.
    Zhou G; Peng C; Li Y; Liu S; Zhang Q; Tang X; Liu J; Yan J; Zhang D; Chu G
    Glob Chang Biol; 2013 Apr; 19(4):1197-210. PubMed ID: 23504896
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Future carbon balance of China's forests under climate change and increasing CO2.
    Ju WM; Chen JM; Harvey D; Wang S
    J Environ Manage; 2007 Nov; 85(3):538-62. PubMed ID: 17187919
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Increased topsoil carbon stock across China's forests.
    Yang Y; Li P; Ding J; Zhao X; Ma W; Ji C; Fang J
    Glob Chang Biol; 2014 Aug; 20(8):2687-96. PubMed ID: 24453073
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Spatio-temporal changes in biomass carbon sinks in China's forests from 1977 to 2008.
    Guo Z; Hu H; Li P; Li N; Fang J
    Sci China Life Sci; 2013 Jul; 56(7):661-71. PubMed ID: 23722235
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Carbon sinks and sources in China's forests during 1901-2001.
    Wang S; Chen JM; Ju WM; Feng X; Chen M; Chen P; Yu G
    J Environ Manage; 2007 Nov; 85(3):524-37. PubMed ID: 17137706
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Responses of forest ecosystems to increasing N deposition in China: A critical review.
    Tian D; Du E; Jiang L; Ma S; Zeng W; Zou A; Feng C; Xu L; Xing A; Wang W; Zheng C; Ji C; Shen H; Fang J
    Environ Pollut; 2018 Dec; 243(Pt A):75-86. PubMed ID: 30172126
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Relationships between net primary productivity and stand age for several forest types and their influence on China's carbon balance.
    Wang S; Zhou L; Chen J; Ju W; Feng X; Wu W
    J Environ Manage; 2011 Jun; 92(6):1651-62. PubMed ID: 21339040
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The production of phytolith-occluded carbon in China's forests: implications to biogeochemical carbon sequestration.
    Song Z; Liu H; Li B; Yang X
    Glob Chang Biol; 2013 Sep; 19(9):2907-15. PubMed ID: 23729188
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biomass carbon stocks in China's forests between 2000 and 2050: a prediction based on forest biomass-age relationships.
    Xu B; Guo Z; Piao S; Fang J
    Sci China Life Sci; 2010 Jul; 53(7):776-83. PubMed ID: 20697867
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Regional-scale directional changes in abundance of tree species along a temperature gradient in Japan.
    Suzuki SN; Ishihara MI; Hidaka A
    Glob Chang Biol; 2015 Sep; 21(9):3436-44. PubMed ID: 25712048
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of thinning on the demography and functional community structure of a secondary tropical lowland rain forest.
    Ding Y; Zang R
    J Environ Manage; 2021 Feb; 279():111805. PubMed ID: 33316643
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effectiveness of China's National Forest Protection Program and nature reserves.
    Ren G; Young SS; Wang L; Wang W; Long Y; Wu R; Li J; Zhu J; Yu DW
    Conserv Biol; 2015 Oct; 29(5):1368-77. PubMed ID: 26171762
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Changes in forest productivity across Alaska consistent with biome shift.
    Beck PS; Juday GP; Alix C; Barber VA; Winslow SE; Sousa EE; Heiser P; Herriges JD; Goetz SJ
    Ecol Lett; 2011 Apr; 14(4):373-9. PubMed ID: 21332901
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Low functional redundancy revealed high vulnerability of the subtropical evergreen broadleaved forests to environmental change.
    Huang C; Xu Y; Zang R
    Sci Total Environ; 2024 Jul; 935():173307. PubMed ID: 38777067
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Growing biodiverse carbon-rich forests.
    Pichancourt JB; Firn J; Chadès I; Martin TG
    Glob Chang Biol; 2014 Feb; 20(2):382-93. PubMed ID: 23913584
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Increasing liana abundance and biomass in tropical forests: emerging patterns and putative mechanisms.
    Schnitzer SA; Bongers F
    Ecol Lett; 2011 Apr; 14(4):397-406. PubMed ID: 21314879
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Compositional shifts in Costa Rican forests due to climate-driven species migrations.
    Feeley KJ; Hurtado J; Saatchi S; Silman MR; Clark DB
    Glob Chang Biol; 2013 Nov; 19(11):3472-80. PubMed ID: 23794172
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Pattern and process in Amazon tree turnover, 1976-2001.
    Phillips OL; Baker TR; Arroyo L; Higuchi N; Killeen TJ; Laurance WF; Lewis SL; Lloyd J; Malhi Y; Monteagudo A; Neill DA; Vargas PN; Silva JN; Terborgh J; Martínez RV; Alexiades M; Almeida S; Brown S; Chave J; Comiskey JA; Czimczik CI; Di Fiore A; Erwin T; Kuebler C; Laurance SG; Nascimento HE; Olivier J; Palacios W; Patiño S; Pitman NC; Quesada CA; Saldias M; Lezama AT; Vinceti B
    Philos Trans R Soc Lond B Biol Sci; 2004 Mar; 359(1443):381-407. PubMed ID: 15212092
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Why are there more arboreal ant species in primary than in secondary tropical forests?
    Klimes P; Idigel C; Rimandai M; Fayle TM; Janda M; Weiblen GD; Novotny V
    J Anim Ecol; 2012 Sep; 81(5):1103-12. PubMed ID: 22642689
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.