These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
124 related articles for article (PubMed ID: 24022950)
1. Theoretical investigation of the mechanism of the baeyer-villiger reaction in nonpolar solvents. Okuno Y Chemistry; 1997 Feb; 3(2):212-8. PubMed ID: 24022950 [TBL] [Abstract][Full Text] [Related]
2. The role of acid catalysis in the Baeyer-Villiger reaction. A theoretical study. Bach RD J Org Chem; 2012 Aug; 77(16):6801-15. PubMed ID: 22849715 [TBL] [Abstract][Full Text] [Related]
3. Mechanistic investigation of chiral phosphoric acid catalyzed asymmetric Baeyer-Villiger reaction of 3-substituted cyclobutanones with H2O2 as the oxidant. Xu S; Wang Z; Li Y; Zhang X; Wang H; Ding K Chemistry; 2010 Mar; 16(10):3021-35. PubMed ID: 20108279 [TBL] [Abstract][Full Text] [Related]
4. Substituent effects in the migration step of the Baeyer-Villiger rearrangement. A theoretical study. Reyes L; Castro M; Cruz J; Rubio M J Phys Chem A; 2005 Apr; 109(15):3383-90. PubMed ID: 16833673 [TBL] [Abstract][Full Text] [Related]
5. A new specific mechanism for the acid catalysis of the addition step in the Baeyer-Villiger rearrangement. Alvarez-Idaboy JR; Reyes L; Cruz J Org Lett; 2006 Apr; 8(9):1763-5. PubMed ID: 16623545 [TBL] [Abstract][Full Text] [Related]
6. Theoretical and experimental studies on the Baeyer-Villiger oxidation of ketones and the effect of alpha-halo substituents. Grein F; Chen AC; Edwards D; Crudden CM J Org Chem; 2006 Feb; 71(3):861-72. PubMed ID: 16438495 [TBL] [Abstract][Full Text] [Related]
7. Effects of alkyl groups in the rate determining step of the Baeyer-Villiger reaction of phenyl alkyl ketones: a quantum chemistry study. Reyes L; Díaz-Sánchez C; Iuga C J Phys Chem A; 2012 Jul; 116(29):7712-7. PubMed ID: 22738150 [TBL] [Abstract][Full Text] [Related]
8. The Baeyer-Villiger reaction: solvent effects on reaction mechanisms. Mora-Diez N; Keller S; Alvarez-Idaboy JR Org Biomol Chem; 2009 Sep; 7(18):3682-90. PubMed ID: 19707672 [TBL] [Abstract][Full Text] [Related]
9. Theoretical study on the hypervalent λ3-bromane strategy for Baeyer-Villiger oxidation of benzaldehyde and acetaldehyde: rearrangement mechanism. Fu H; Xie S; Fu A; Lin X; Zhao H; Ye T Org Biomol Chem; 2012 Aug; 10(31):6333-40. PubMed ID: 22735260 [TBL] [Abstract][Full Text] [Related]
10. Reinvestigating the role of multiple hydrogen transfers in Baeyer-Villiger reactions. Alvarez-Idaboy JR; Reyes L J Org Chem; 2007 Aug; 72(17):6580-3. PubMed ID: 17655256 [TBL] [Abstract][Full Text] [Related]
11. Theoretical Studies on the Asymmetric Baeyer-Villiger Oxidation Reaction of 4-Phenylcyclohexanone with m-Chloroperoxobenzoic Acid Catalyzed by Chiral Scandium(III)-N,N'-Dioxide Complexes. Yang N; Su Z; Feng X; Hu C Chemistry; 2015 May; 21(19):7264-77. PubMed ID: 25809412 [TBL] [Abstract][Full Text] [Related]
12. Theoretical study on the regioselectivity of Baeyer-Villiger Reaction of α-Me-, -F-, -CF3-cyclohexanones. Itoh Y; Yamanaka M; Mikami K J Org Chem; 2013 Jan; 78(1):146-53. PubMed ID: 23190362 [TBL] [Abstract][Full Text] [Related]
13. Deuterium kinetic isotope effects and the mechanism of the bacterial luciferase reaction. Francisco WA; Abu-Soud HM; DelMonte AJ; Singleton DA; Baldwin TO; Raushel FM Biochemistry; 1998 Feb; 37(8):2596-606. PubMed ID: 9485410 [TBL] [Abstract][Full Text] [Related]
14. A theoretical study of the uncatalyzed and BF3-assisted Baeyer-Villiger reactions. Carlqvist P; Eklund R; Brinck T J Org Chem; 2001 Feb; 66(4):1193-9. PubMed ID: 11312947 [TBL] [Abstract][Full Text] [Related]
15. Theoretical and experimental studies on selective oxidation of aromatic ketone by performic acid. Liu B; Meng XG; Li WY; Zhou LC; Hu CW J Phys Chem A; 2012 Mar; 116(11):2920-6. PubMed ID: 22356462 [TBL] [Abstract][Full Text] [Related]
16. A multisite molecular mechanism for Baeyer-Villiger oxidations on solid catalysts using environmentally friendly H2O2 as oxidant. Boronat M; Corma A; Renz M; Sastre G; Viruela PM Chemistry; 2005 Nov; 11(23):6905-15. PubMed ID: 16163761 [TBL] [Abstract][Full Text] [Related]
17. Theoretical perspectives on the reaction mechanism of serine proteases: the reaction free energy profiles of the acylation process. Ishida T; Kato S J Am Chem Soc; 2003 Oct; 125(39):12035-48. PubMed ID: 14505425 [TBL] [Abstract][Full Text] [Related]
18. The mechanism of the Baeyer-Villiger rearrangement: quantum chemistry and TST study supported by experimental kinetic data. Alvarez-Idaboy JR; Reyes L; Mora-Diez N Org Biomol Chem; 2007 Nov; 5(22):3682-9. PubMed ID: 17971998 [TBL] [Abstract][Full Text] [Related]
19. The role of hydrogen bonds in Baeyer-Villiger reactions. Yamabe S; Yamazaki S J Org Chem; 2007 Apr; 72(8):3031-41. PubMed ID: 17367197 [TBL] [Abstract][Full Text] [Related]
20. Effects of changes in three catalytic residues on the relative stabilities of some of the intermediates and transition states in the citrate synthase reaction. Kurz LC; Nakra T; Stein R; Plungkhen W; Riley M; Hsu F; Drysdale GR Biochemistry; 1998 Jul; 37(27):9724-37. PubMed ID: 9657685 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]