These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 24023041)

  • 1. Ultrathin {001}-oriented bismuth tungsten oxide nanosheets as highly efficient photocatalysts.
    Sun S; Wang W; Zhang L; Gao E; Jiang D; Sun Y; Xie Y
    ChemSusChem; 2013 Oct; 6(10):1873-7. PubMed ID: 24023041
    [No Abstract]   [Full Text] [Related]  

  • 2. Ti(iv) doped WO₃ nanocuboids: fabrication and enhanced visible-light-driven photocatalytic performance.
    Feng C; Wang S; Geng B
    Nanoscale; 2011 Sep; 3(9):3695-9. PubMed ID: 21785781
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nanostructured tungsten trioxide thin films synthesized for photoelectrocatalytic water oxidation: a review.
    Zhu T; Chong MN; Chan ES
    ChemSusChem; 2014 Nov; 7(11):2974-97. PubMed ID: 25274424
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An anion exchange approach to Bi2WO6 hollow microspheres with efficient visible light photocatalytic reduction of CO2 to methanol.
    Cheng H; Huang B; Liu Y; Wang Z; Qin X; Zhang X; Dai Y
    Chem Commun (Camb); 2012 Oct; 48(78):9729-31. PubMed ID: 22914674
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Direct evidence of the photocatalytic generation of reactive oxygen species (ROS) in a Bi
    Obregón S; Ruíz-Gómez MA; Hernández-Uresti DB
    J Colloid Interface Sci; 2017 Nov; 506():111-119. PubMed ID: 28728028
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Photocatalytic Water Oxidation over Metal Oxide Nanosheets Having a Three-Layer Perovskite Structure.
    Oshima T; Eguchi M; Maeda K
    ChemSusChem; 2016 Feb; 9(4):396-402. PubMed ID: 26733314
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Discovery of Overcoating Metal Oxides on Photoelectrode for Water Splitting by Automated Screening.
    Saito R; Miseki Y; Nini W; Sayama K
    ACS Comb Sci; 2015 Oct; 17(10):592-9. PubMed ID: 26325162
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Tuning the photocatalytic activity of bismuth wolframate: towards selective oxidations for the biorefinery driven by solar-light.
    Ciriminna R; Delisi R; Parrino F; Palmisano L; Pagliaro M
    Chem Commun (Camb); 2017 Jul; 53(54):7521-7524. PubMed ID: 28631780
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Vacancy associates promoting solar-driven photocatalytic activity of ultrathin bismuth oxychloride nanosheets.
    Guan M; Xiao C; Zhang J; Fan S; An R; Cheng Q; Xie J; Zhou M; Ye B; Xie Y
    J Am Chem Soc; 2013 Jul; 135(28):10411-7. PubMed ID: 23782301
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mesoporous layer-by-layer ordered nanohybrids of layered double hydroxide and layered metal oxide: highly active visible light photocatalysts with improved chemical stability.
    Gunjakar JL; Kim TW; Kim HN; Kim IY; Hwang SJ
    J Am Chem Soc; 2011 Sep; 133(38):14998-5007. PubMed ID: 21861530
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bi2WO6 nano- and microstructures: shape control and associated visible-light-driven photocatalytic activities.
    Zhang L; Wang W; Zhou L; Xu H
    Small; 2007 Sep; 3(9):1618-25. PubMed ID: 17705311
    [TBL] [Abstract][Full Text] [Related]  

  • 12. F-Doped Co3O4 photocatalysts for sustainable H2 generation from water/ethanol.
    Gasparotto A; Barreca D; Bekermann D; Devi A; Fischer RA; Fornasiero P; Gombac V; Lebedev OI; Maccato C; Montini T; Van Tendeloo G; Tondello E
    J Am Chem Soc; 2011 Dec; 133(48):19362-5. PubMed ID: 22053896
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Processing-structure-property relationships of Bi2WO6 nanostructures as visible-light-driven photocatalyst.
    Cui Z; Zeng D; Tang T; Liu J; Xie C
    J Hazard Mater; 2010 Nov; 183(1-3):211-7. PubMed ID: 20702034
    [TBL] [Abstract][Full Text] [Related]  

  • 14. High-Throughput Strategies for the Design, Discovery, and Analysis of Bismuth-Based Photocatalysts.
    Prabhakar Vattikuti SV; Zeng J; Ramaraghavulu R; Shim J; Mauger A; Julien CM
    Int J Mol Sci; 2022 Dec; 24(1):. PubMed ID: 36614112
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ultrathin oxygen-vacancy abundant WO
    Zhang M; Lai C; Li B; Huang D; Liu S; Qin L; Yi H; Fu Y; Xu F; Li M; Li L
    J Colloid Interface Sci; 2019 Nov; 556():557-567. PubMed ID: 31476488
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bi(2) WO(6) inverse opals: facile fabrication and efficient visible-light-driven photocatalytic and photoelectrochemical water-splitting activity.
    Zhang L; Baumanis C; Robben L; Kandiel T; Bahnemann D
    Small; 2011 Oct; 7(19):2714-20. PubMed ID: 21861296
    [No Abstract]   [Full Text] [Related]  

  • 17. Targeted synthesis and environmental applications of oxide nanomaterials.
    Zhou Y; Patzke GR
    Chimia (Aarau); 2010; 64(4):252-8. PubMed ID: 21138192
    [TBL] [Abstract][Full Text] [Related]  

  • 18. TBAOH assisted synthesis of ultrathin BiOCl nanosheets with enhanced charge separation efficiency for superior photocatalytic activity in carbamazepine degradation.
    Gao X; Guo Q; Tang G; Zhu W; Yang X; Luo Y
    J Colloid Interface Sci; 2020 Jun; 570():242-250. PubMed ID: 32155502
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Recent Advances in Bismuth-Based Nanomaterials for Photoelectrochemical Water Splitting.
    Bhat SSM; Jang HW
    ChemSusChem; 2017 Aug; 10(15):3001-3018. PubMed ID: 28612464
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nanoscale imaging of charge carrier transport in water splitting photoanodes.
    Eichhorn J; Kastl C; Cooper JK; Ziegler D; Schwartzberg AM; Sharp ID; Toma FM
    Nat Commun; 2018 Jul; 9(1):2597. PubMed ID: 30013111
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.