BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

347 related articles for article (PubMed ID: 24023514)

  • 1. Engineered nanomaterial uptake and tissue distribution: from cell to organism.
    Kettiger H; Schipanski A; Wick P; Huwyler J
    Int J Nanomedicine; 2013; 8():3255-69. PubMed ID: 24023514
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Interaction of nanomaterials with cells and their medical applications.
    Wahid F; Khan T; Shehzad A; Ui-Islam M; Kim YY
    J Nanosci Nanotechnol; 2014 Jan; 14(1):744-54. PubMed ID: 24730294
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Shape and orientation matter for the cellular uptake of nonspherical particles.
    Dasgupta S; Auth T; Gompper G
    Nano Lett; 2014 Feb; 14(2):687-93. PubMed ID: 24383757
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Quantitative uptake of colloidal particles by cell cultures.
    Feliu N; Hühn J; Zyuzin MV; Ashraf S; Valdeperez D; Masood A; Said AH; Escudero A; Pelaz B; Gonzalez E; Duarte MAC; Roy S; Chakraborty I; Lim ML; Sjöqvist S; Jungebluth P; Parak WJ
    Sci Total Environ; 2016 Oct; 568():819-828. PubMed ID: 27306826
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cellular internalization, transcellular transport, and cellular effects of silver nanoparticles in polarized Caco-2 cells following apical or basolateral exposure.
    Imai S; Morishita Y; Hata T; Kondoh M; Yagi K; Gao JQ; Nagano K; Higashisaka K; Yoshioka Y; Tsutsumi Y
    Biochem Biophys Res Commun; 2017 Mar; 484(3):543-549. PubMed ID: 28130106
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Epidermal Growth Factor Enhances Cellular Uptake of Polystyrene Nanoparticles by Clathrin-Mediated Endocytosis.
    Phuc LTM; Taniguchi A
    Int J Mol Sci; 2017 Jun; 18(6):. PubMed ID: 28629179
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cellular interactions of a lipid-based nanocarrier model with human keratinocytes: Unravelling transport mechanisms.
    Silva E; Barreiros L; Segundo MA; Costa Lima SA; Reis S
    Acta Biomater; 2017 Apr; 53():439-449. PubMed ID: 28119111
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modification of the in vitro uptake mechanism and antioxidant levels in HaCaT cells and resultant changes to toxicity and oxidative stress of G4 and G6 poly(amidoamine) dendrimer nanoparticles.
    Maher MA; Byrne HJ
    Anal Bioanal Chem; 2016 Jul; 408(19):5295-307. PubMed ID: 27209595
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Receptor-mediated endocytosis of nanoparticles of various shapes.
    Vácha R; Martinez-Veracoechea FJ; Frenkel D
    Nano Lett; 2011 Dec; 11(12):5391-5. PubMed ID: 22047641
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cellular Uptake of Nanoparticles versus Small Molecules: A Matter of Size.
    Mosquera J; García I; Liz-Marzán LM
    Acc Chem Res; 2018 Sep; 51(9):2305-2313. PubMed ID: 30156826
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Defining the subcellular interface of nanoparticles by live-cell imaging.
    Hemmerich PH; von Mikecz AH
    PLoS One; 2013; 8(4):e62018. PubMed ID: 23637951
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cellular uptake of nanoparticles as determined by particle properties, experimental conditions, and cell type.
    Kettler K; Veltman K; van de Meent D; van Wezel A; Hendriks AJ
    Environ Toxicol Chem; 2014 Mar; 33(3):481-92. PubMed ID: 24273100
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mechanism of the uptake of cationic and anionic calcium phosphate nanoparticles by cells.
    Sokolova V; Kozlova D; Knuschke T; Buer J; Westendorf AM; Epple M
    Acta Biomater; 2013 Jul; 9(7):7527-35. PubMed ID: 23454056
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of the Microparticle Shape on Cellular Uptake.
    He Y; Park K
    Mol Pharm; 2016 Jul; 13(7):2164-71. PubMed ID: 26905216
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nanoparticles: cellular uptake and cytotoxicity.
    Adjei IM; Sharma B; Labhasetwar V
    Adv Exp Med Biol; 2014; 811():73-91. PubMed ID: 24683028
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cytosolic delivery of membrane-impermeable molecules in dendritic cells using pH-responsive core-shell nanoparticles.
    Hu Y; Litwin T; Nagaraja AR; Kwong B; Katz J; Watson N; Irvine DJ
    Nano Lett; 2007 Oct; 7(10):3056-64. PubMed ID: 17887715
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Glimpse into the Cellular Internalization and Intracellular Trafficking of Lipid- Based Nanoparticles in Cancer Cells.
    Kazemi EK; Abedi-Gaballu F; Mohammad Hosseini TF; Mohammadi A; Mansoori B; Dehghan G; Baradaran B; Sheibani N
    Anticancer Agents Med Chem; 2022; 22(10):1897-1912. PubMed ID: 34488605
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The agglomeration state of nanoparticles can influence the mechanism of their cellular internalisation.
    Halamoda-Kenzaoui B; Ceridono M; Urbán P; Bogni A; Ponti J; Gioria S; Kinsner-Ovaskainen A
    J Nanobiotechnology; 2017 Jun; 15(1):48. PubMed ID: 28651541
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Understanding nanoparticle cellular entry: A physicochemical perspective.
    Beddoes CM; Case CP; Briscoe WH
    Adv Colloid Interface Sci; 2015 Apr; 218():48-68. PubMed ID: 25708746
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bio-identity and fate of albumin-coated SPIONs evaluated in cells and by the C. elegans model.
    Yu SM; Gonzalez-Moragas L; Milla M; Kolovou A; Santarella-Mellwig R; Schwab Y; Laromaine A; Roig A
    Acta Biomater; 2016 Oct; 43():348-357. PubMed ID: 27427227
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.