BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

340 related articles for article (PubMed ID: 24023628)

  • 21. Single-spore germination analyses reveal that calcium released during
    Ribis JW; Melo L; Shrestha S; Giacalone D; Rodriguez EE; Shen A; Rohlfing A
    mSphere; 2023 Aug; 8(4):e0000523. PubMed ID: 37338207
    [No Abstract]   [Full Text] [Related]  

  • 22. Protection from Lethal Clostridioides difficile Infection via Intraspecies Competition for Cogerminant.
    Leslie JL; Jenior ML; Vendrov KC; Standke AK; Barron MR; O'Brien TJ; Unverdorben L; Thaprawat P; Bergin IL; Schloss PD; Young VB
    mBio; 2021 Mar; 12(2):. PubMed ID: 33785619
    [No Abstract]   [Full Text] [Related]  

  • 23. Characterization of the Dynamic Germination of Individual Clostridium difficile Spores Using Raman Spectroscopy and Differential Interference Contrast Microscopy.
    Wang S; Shen A; Setlow P; Li YQ
    J Bacteriol; 2015 Jul; 197(14):2361-73. PubMed ID: 25939833
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Inhibiting the initiation of Clostridium difficile spore germination using analogs of chenodeoxycholic acid, a bile acid.
    Sorg JA; Sonenshein AL
    J Bacteriol; 2010 Oct; 192(19):4983-90. PubMed ID: 20675492
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Clearance of Clostridioides difficile Colonization Is Associated with Antibiotic-Specific Bacterial Changes.
    Lesniak NA; Schubert AM; Sinani H; Schloss PD
    mSphere; 2021 May; 6(3):. PubMed ID: 33952668
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Drivers of Clostridioides difficile hypervirulent ribotype 027 spore germination, vegetative cell growth and toxin production in vitro.
    Yuille S; Mackay WG; Morrison DJ; Tedford MC
    Clin Microbiol Infect; 2020 Jul; 26(7):941.e1-941.e7. PubMed ID: 31715298
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Inhibition of spore germination, growth, and toxin activity of clinically relevant C. difficile strains by gut microbiota derived secondary bile acids.
    Thanissery R; Winston JA; Theriot CM
    Anaerobe; 2017 Jun; 45():86-100. PubMed ID: 28279860
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Dynamics and establishment of Clostridium difficile infection in the murine gastrointestinal tract.
    Koenigsknecht MJ; Theriot CM; Bergin IL; Schumacher CA; Schloss PD; Young VB
    Infect Immun; 2015 Mar; 83(3):934-41. PubMed ID: 25534943
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Correlating Antibiotic-Induced Dysbiosis to
    Moore JH; Salahi A; Honrado C; Warburton C; Tate S; Warren CA; Swami NS
    ACS Infect Dis; 2023 Oct; 9(10):1878-1888. PubMed ID: 37756389
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Inhibiting Growth of Clostridioides difficile by Restoring Valerate, Produced by the Intestinal Microbiota.
    McDonald JAK; Mullish BH; Pechlivanis A; Liu Z; Brignardello J; Kao D; Holmes E; Li JV; Clarke TB; Thursz MR; Marchesi JR
    Gastroenterology; 2018 Nov; 155(5):1495-1507.e15. PubMed ID: 30025704
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Kinetic evidence for the presence of putative germination receptors in Clostridium difficile spores.
    Ramirez N; Liggins M; Abel-Santos E
    J Bacteriol; 2010 Aug; 192(16):4215-22. PubMed ID: 20562307
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A modified R-type bacteriocin specifically targeting Clostridium difficile prevents colonization of mice without affecting gut microbiota diversity.
    Gebhart D; Lok S; Clare S; Tomas M; Stares M; Scholl D; Donskey CJ; Lawley TD; Govoni GR
    mBio; 2015 Mar; 6(2):. PubMed ID: 25805733
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A Revised Understanding of Clostridioides difficile Spore Germination.
    Lawler AJ; Lambert PA; Worthington T
    Trends Microbiol; 2020 Sep; 28(9):744-752. PubMed ID: 32781028
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A 3D intestinal tissue model supports Clostridioides difficile germination, colonization, toxin production and epithelial damage.
    Shaban L; Chen Y; Fasciano AC; Lin Y; Kaplan DL; Kumamoto CA; Mecsas J
    Anaerobe; 2018 Apr; 50():85-92. PubMed ID: 29462695
    [TBL] [Abstract][Full Text] [Related]  

  • 35.
    Zhu D; Sorg JA; Sun X
    Front Cell Infect Microbiol; 2018; 8():29. PubMed ID: 29473021
    [No Abstract]   [Full Text] [Related]  

  • 36. A Clostridium difficile-Specific, Gel-Forming Protein Required for Optimal Spore Germination.
    Donnelly ML; Li W; Li YQ; Hinkel L; Setlow P; Shen A
    mBio; 2017 Jan; 8(1):. PubMed ID: 28096487
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Bile salt metabolism is not the only factor contributing to
    Jukes CA; Ijaz UZ; Buckley A; Spencer J; Irvine J; Candlish D; Li JV; Marchesi JR; Douce G
    Gut Microbes; 2020 May; 11(3):481-496. PubMed ID: 31793403
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Cephamycins inhibit pathogen sporulation and effectively treat recurrent Clostridioides difficile infection.
    Srikhanta YN; Hutton ML; Awad MM; Drinkwater N; Singleton J; Day SL; Cunningham BA; McGowan S; Lyras D
    Nat Microbiol; 2019 Dec; 4(12):2237-2245. PubMed ID: 31406331
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Spores of Clostridium difficile clinical isolates display a diverse germination response to bile salts.
    Heeg D; Burns DA; Cartman ST; Minton NP
    PLoS One; 2012; 7(2):e32381. PubMed ID: 22384234
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Revisiting the Role of Csp Family Proteins in Regulating Clostridium difficile Spore Germination.
    Kevorkian Y; Shen A
    J Bacteriol; 2017 Nov; 199(22):. PubMed ID: 28874406
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 17.