These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
341 related articles for article (PubMed ID: 24023628)
41. Bile acid recognition by the Clostridium difficile germinant receptor, CspC, is important for establishing infection. Francis MB; Allen CA; Shrestha R; Sorg JA PLoS Pathog; 2013 May; 9(5):e1003356. PubMed ID: 23675301 [TBL] [Abstract][Full Text] [Related]
42. Quantifying bacterial spore germination by single-cell impedance cytometry for assessment of host microbiota susceptibility to Clostridioides difficile infection. Moore JH; Salahi A; Honrado C; Warburton C; Warren CA; Swami NS Biosens Bioelectron; 2020 Oct; 166():112440. PubMed ID: 32745926 [TBL] [Abstract][Full Text] [Related]
44. Pre-colonization with the commensal fungus Candida albicans reduces murine susceptibility to Clostridium difficile infection. Markey L; Shaban L; Green ER; Lemon KP; Mecsas J; Kumamoto CA Gut Microbes; 2018 Nov; 9(6):497-509. PubMed ID: 29667487 [TBL] [Abstract][Full Text] [Related]
45. Germination efficiency of clinical Clostridium difficile spores and correlation with ribotype, disease severity and therapy failure. Moore P; Kyne L; Martin A; Solomon K J Med Microbiol; 2013 Sep; 62(Pt 9):1405-1413. PubMed ID: 23518657 [TBL] [Abstract][Full Text] [Related]
47. Muricholic acids inhibit Clostridium difficile spore germination and growth. Francis MB; Allen CA; Sorg JA PLoS One; 2013; 8(9):e73653. PubMed ID: 24040011 [TBL] [Abstract][Full Text] [Related]
48. Clostridioides difficile infection induces a rapid influx of bile acids into the gut during colonization of the host. Wexler AG; Guiberson ER; Beavers WN; Shupe JA; Washington MK; Lacy DB; Caprioli RM; Spraggins JM; Skaar EP Cell Rep; 2021 Sep; 36(10):109683. PubMed ID: 34496241 [TBL] [Abstract][Full Text] [Related]
49. Ursodeoxycholic Acid (UDCA) Mitigates the Host Inflammatory Response during Clostridioides difficile Infection by Altering Gut Bile Acids. Winston JA; Rivera AJ; Cai J; Thanissery R; Montgomery SA; Patterson AD; Theriot CM Infect Immun; 2020 May; 88(6):. PubMed ID: 32205405 [No Abstract] [Full Text] [Related]
50. Both fidaxomicin and vancomycin inhibit outgrowth of Clostridium difficile spores. Allen CA; Babakhani F; Sears P; Nguyen L; Sorg JA Antimicrob Agents Chemother; 2013 Jan; 57(1):664-7. PubMed ID: 23147724 [TBL] [Abstract][Full Text] [Related]
51. Progesterone analogs influence germination of Clostridium sordellii and Clostridium difficile spores in vitro. Liggins M; Ramirez N; Magnuson N; Abel-Santos E J Bacteriol; 2011 Jun; 193(11):2776-83. PubMed ID: 21478359 [TBL] [Abstract][Full Text] [Related]
52. Strain-Dependent Inhibition of Clostridioides difficile by Commensal Reed AD; Nethery MA; Stewart A; Barrangou R; Theriot CM J Bacteriol; 2020 May; 202(11):. PubMed ID: 32179626 [No Abstract] [Full Text] [Related]
53. Regulation of Clostridium difficile spore germination by the CspA pseudoprotease domain. Kevorkian Y; Shirley DJ; Shen A Biochimie; 2016 Mar; 122():243-54. PubMed ID: 26231446 [TBL] [Abstract][Full Text] [Related]
54. Investigation of the effect of the adsorbent DAV131A on the propensity of moxifloxacin to induce simulated Clostridioides (Clostridium) difficile infection (CDI) in an in vitro human gut model. Chilton CH; Crowther GS; Miossec C; de Gunzburg J; Andremont A; Wilcox MH J Antimicrob Chemother; 2020 Jun; 75(6):1458-1465. PubMed ID: 32097465 [TBL] [Abstract][Full Text] [Related]
55. Updates on Clostridium difficile spore biology. Gil F; Lagos-Moraga S; Calderón-Romero P; Pizarro-Guajardo M; Paredes-Sabja D Anaerobe; 2017 Jun; 45():3-9. PubMed ID: 28254263 [TBL] [Abstract][Full Text] [Related]
58. Identification of a Novel Lipoprotein Regulator of Clostridium difficile Spore Germination. Fimlaid KA; Jensen O; Donnelly ML; Francis MB; Sorg JA; Shen A PLoS Pathog; 2015 Oct; 11(10):e1005239. PubMed ID: 26496694 [TBL] [Abstract][Full Text] [Related]
59. In vitro and in vivo antibacterial evaluation of cadazolid, a new antibiotic for treatment of Clostridium difficile infections. Locher HH; Seiler P; Chen X; Schroeder S; Pfaff P; Enderlin M; Klenk A; Fournier E; Hubschwerlen C; Ritz D; Kelly CP; Keck W Antimicrob Agents Chemother; 2014; 58(2):892-900. PubMed ID: 24277020 [TBL] [Abstract][Full Text] [Related]
60. Antimicrobial Activity of Tannic Acid Wang W; Cao J; Yang J; Niu X; Liu X; Zhai Y; Qiang C; Niu Y; Li Z; Dong N; Wen B; Ouyang Z; Zhang Y; Li J; Zhao M; Zhao J Microbiol Spectr; 2023 Feb; 11(1):e0261822. PubMed ID: 36537806 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]