These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
184 related articles for article (PubMed ID: 24023687)
81. Thiamin transport in Helicobacter pylori lacking the de novo synthesis of thiamin. Nosaka K; Uchiyama R; Tadano K; Endo Y; Hayashi M; Konno H; Mimuro H Microbiology (Reading); 2019 Feb; 165(2):224-232. PubMed ID: 30620266 [TBL] [Abstract][Full Text] [Related]
82. Binding of mitochondrial leader sequences to Tom20 assessed using a bacterial two-hybrid system shows that hydrophobic interactions are essential and that some mutated leaders that do not bind Tom20 can still be imported. Mukhopadhyay A; Yang CS; Weiner H Protein Sci; 2006 Dec; 15(12):2739-48. PubMed ID: 17088320 [TBL] [Abstract][Full Text] [Related]
83. An unusual TOM20/TOM22 bypass mechanism for the mitochondrial targeting of cytochrome P450 proteins containing N-terminal chimeric signals. Anandatheerthavarada HK; Sepuri NB; Biswas G; Avadhani NG J Biol Chem; 2008 Jul; 283(28):19769-80. PubMed ID: 18480056 [TBL] [Abstract][Full Text] [Related]
84. The mechanism of carrier-mediated transport of folates in BeWo cells: the involvement of heme carrier protein 1 in placental folate transport. Yasuda S; Hasui S; Kobayashi M; Itagaki S; Hirano T; Iseki K Biosci Biotechnol Biochem; 2008 Feb; 72(2):329-34. PubMed ID: 18256483 [TBL] [Abstract][Full Text] [Related]
85. TPP riboswitch-dependent regulation of an ancient thiamin transporter in Candida. Donovan PD; Holland LM; Lombardi L; Coughlan AY; Higgins DG; Wolfe KH; Butler G PLoS Genet; 2018 May; 14(5):e1007429. PubMed ID: 29852014 [TBL] [Abstract][Full Text] [Related]
86. 2-Acetylthiamin pyrophosphate: an enzyme-bound intermediate in thiamin pyrophosphate-dependent reactions. Frey PA Biofactors; 1989 Mar; 2(1):1-9. PubMed ID: 2679649 [TBL] [Abstract][Full Text] [Related]
87. Identification of the tryptophan residue in the thiamin pyrophosphate binding site of mammalian pyruvate dehydrogenase. Ali MS; Shenoy BC; Eswaran D; Andersson LA; Roche TE; Patel MS J Biol Chem; 1995 Mar; 270(9):4570-4. PubMed ID: 7876227 [TBL] [Abstract][Full Text] [Related]
88. Identification and reconstitution of the yeast mitochondrial transporter for thiamine pyrophosphate. Marobbio CM; Vozza A; Harding M; Bisaccia F; Palmieri F; Walker JE EMBO J; 2002 Nov; 21(21):5653-61. PubMed ID: 12411483 [TBL] [Abstract][Full Text] [Related]
89. Mitofusin-1 protein is a generally expressed mediator of mitochondrial fusion in mammalian cells. Santel A; Frank S; Gaume B; Herrler M; Youle RJ; Fuller MT J Cell Sci; 2003 Jul; 116(Pt 13):2763-74. PubMed ID: 12759376 [TBL] [Abstract][Full Text] [Related]
90. Identification of the human mitochondrial S-adenosylmethionine transporter: bacterial expression, reconstitution, functional characterization and tissue distribution. Agrimi G; Di Noia MA; Marobbio CM; Fiermonte G; Lasorsa FM; Palmieri F Biochem J; 2004 Apr; 379(Pt 1):183-90. PubMed ID: 14674884 [TBL] [Abstract][Full Text] [Related]
91. A novel TAT-mitochondrial signal sequence fusion protein is processed, stays in mitochondria, and crosses the placenta. Del Gaizo V; Payne RM Mol Ther; 2003 Jun; 7(6):720-30. PubMed ID: 12788645 [TBL] [Abstract][Full Text] [Related]
92. Developmental maturation of intestinal and renal thiamin uptake: studies in wild-type and transgenic mice carrying human THTR-1 and 2 promoters. Reidling JC; Nabokina SM; Balamurugan K; Said HM J Cell Physiol; 2006 Feb; 206(2):371-7. PubMed ID: 16206251 [TBL] [Abstract][Full Text] [Related]
93. Targeting and trafficking of the human thiamine transporter-2 in epithelial cells. Subramanian VS; Marchant JS; Said HM J Biol Chem; 2006 Feb; 281(8):5233-45. PubMed ID: 16371350 [TBL] [Abstract][Full Text] [Related]
94. Isolation and characterization of new thiamine-deregulated mutants of Bacillus subtilis. Schyns G; Potot S; Geng Y; Barbosa TM; Henriques A; Perkins JB J Bacteriol; 2005 Dec; 187(23):8127-36. PubMed ID: 16291685 [TBL] [Abstract][Full Text] [Related]
95. Rice DUR3 mediates high-affinity urea transport and plays an effective role in improvement of urea acquisition and utilization when expressed in Arabidopsis. Wang WH; Köhler B; Cao FQ; Liu GW; Gong YY; Sheng S; Song QC; Cheng XY; Garnett T; Okamoto M; Qin R; Mueller-Roeber B; Tester M; Liu LH New Phytol; 2012 Jan; 193(2):432-44. PubMed ID: 22010949 [TBL] [Abstract][Full Text] [Related]
96. Effect of chronic kidney disease on the expression of thiamin and folic acid transporters. Bukhari FJ; Moradi H; Gollapudi P; Ju Kim H; Vaziri ND; Said HM Nephrol Dial Transplant; 2011 Jul; 26(7):2137-44. PubMed ID: 21149507 [TBL] [Abstract][Full Text] [Related]
97. Expression and functional contribution of hTHTR-2 in thiamin absorption in human intestine. Said HM; Balamurugan K; Subramanian VS; Marchant JS Am J Physiol Gastrointest Liver Physiol; 2004 Mar; 286(3):G491-8. PubMed ID: 14615284 [TBL] [Abstract][Full Text] [Related]
98. An ADP/ATP-specific mitochondrial carrier protein in the microsporidian Antonospora locustae. Williams BA; Haferkamp I; Keeling PJ J Mol Biol; 2008 Feb; 375(5):1249-57. PubMed ID: 18078956 [TBL] [Abstract][Full Text] [Related]
99. Targeting proteins to mitochondria using TAT. Del Gaizo V; MacKenzie JA; Payne RM Mol Genet Metab; 2003; 80(1-2):170-80. PubMed ID: 14567966 [TBL] [Abstract][Full Text] [Related]
100. The Apoptosis of Liver Cancer Cells Promoted by Curcumin/TPP-CZL Nanomicelles With Mitochondrial Targeting Function. Li W; Chen Y; He K; Cao T; Song D; Yang H; Li L; Lin J Front Bioeng Biotechnol; 2022; 10():804513. PubMed ID: 35242748 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]