These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 24023793)

  • 1. An efficient 3D cell culture method on biomimetic nanostructured grids.
    Wolun-Cholewa M; Langer K; Szymanowski K; Glodek A; Jankowska A; Warchol W; Langer J
    PLoS One; 2013; 8(9):e72936. PubMed ID: 24023793
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Novel biomimetic chitin-glucan polysaccharide nano/microfibrous fungal-scaffolds for tissue engineering applications.
    Narayanan KB; Zo SM; Han SS
    Int J Biol Macromol; 2020 Apr; 149():724-731. PubMed ID: 32004611
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Engineering of a 3D nanostructured scaffold made of functionalized self-assembling peptides and encapsulated neural stem cells.
    Cunha C; Panseri S; Gelain F
    Methods Mol Biol; 2013; 1058():171-82. PubMed ID: 23526438
    [TBL] [Abstract][Full Text] [Related]  

  • 4. 3D culture of adult mouse neural stem cells within functionalized self-assembling peptide scaffolds.
    Cunha C; Panseri S; Villa O; Silva D; Gelain F
    Int J Nanomedicine; 2011; 6():943-55. PubMed ID: 21720506
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fabrication techniques of biomimetic scaffolds in three-dimensional cell culture: A review.
    Badekila AK; Kini S; Jaiswal AK
    J Cell Physiol; 2021 Feb; 236(2):741-762. PubMed ID: 32657458
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biomimetic design and fabrication of multilayered osteochondral scaffolds by low-temperature deposition manufacturing and thermal-induced phase-separation techniques.
    Zhang T; Zhang H; Zhang L; Jia S; Liu J; Xiong Z; Sun W
    Biofabrication; 2017 May; 9(2):025021. PubMed ID: 28462906
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Osteogenesis effect of dynamic mechanical loading on MC3T3-E1 cells in three-dimensional printing biomimetic composite scaffolds].
    Song X; Li H; Li R; Yuan Q; Liu Y; Cheng W; Zhang X
    Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2018 Apr; 32(4):448-456. PubMed ID: 29806303
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biomimetic nanostructured materials: potential regulators for osteogenesis?
    Ngiam M; Nguyen LT; Liao S; Chan CK; Ramakrishna S
    Ann Acad Med Singap; 2011 May; 40(5):213-22. PubMed ID: 21678012
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biomimetic Layer-by-Layer Self-Assembly of Nanofilms, Nanocoatings, and 3D Scaffolds for Tissue Engineering.
    Zhang S; Xing M; Li B
    Int J Mol Sci; 2018 Jun; 19(6):. PubMed ID: 29865178
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Intrafibrillar collagen mineralization produced by biomimetic hierarchical nanoapatite assembly.
    Liu Y; Li N; Qi YP; Dai L; Bryan TE; Mao J; Pashley DH; Tay FR
    Adv Mater; 2011 Feb; 23(8):975-80. PubMed ID: 21341310
    [No Abstract]   [Full Text] [Related]  

  • 11. Accelerated hardening of nanotextured 3D-plotted self-setting calcium phosphate inks.
    Raymond S; Maazouz Y; Montufar EB; Perez RA; González B; Konka J; Kaiser J; Ginebra MP
    Acta Biomater; 2018 Jul; 75():451-462. PubMed ID: 29842972
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biomimetic mineralized hierarchical hybrid scaffolds based on in situ synthesis of nano-hydroxyapatite/chitosan/chondroitin sulfate/hyaluronic acid for bone tissue engineering.
    Hu Y; Chen J; Fan T; Zhang Y; Zhao Y; Shi X; Zhang Q
    Colloids Surf B Biointerfaces; 2017 Sep; 157():93-100. PubMed ID: 28578273
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biomimetic hybrid nanofibrous substrates for mesenchymal stem cells differentiation into osteogenic cells.
    Gandhimathi C; Venugopal JR; Tham AY; Ramakrishna S; Kumar SD
    Mater Sci Eng C Mater Biol Appl; 2015 Apr; 49():776-785. PubMed ID: 25687008
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Chitosan/collagen based biomimetic osteochondral tissue constructs: A growth factor-free approach.
    Korpayev S; Kaygusuz G; Şen M; Orhan K; Oto Ç; Karakeçili A
    Int J Biol Macromol; 2020 Aug; 156():681-690. PubMed ID: 32320808
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A rapid biofabrication technique for self-assembled collagen-based multicellular and heterogeneous 3D tissue constructs.
    Shahin-Shamsabadi A; Selvaganapathy PR
    Acta Biomater; 2019 Jul; 92():172-183. PubMed ID: 31085365
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biomimetic Approaches for Bone Tissue Engineering.
    Ng J; Spiller K; Bernhard J; Vunjak-Novakovic G
    Tissue Eng Part B Rev; 2017 Oct; 23(5):480-493. PubMed ID: 27912680
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biomimetic 3D-Bone Tissue Model.
    Parmaksiz M; Elçin AE; Elçin YM
    Methods Mol Biol; 2021; 2273():239-250. PubMed ID: 33604858
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bioprinting of 3D hydrogels.
    Stanton MM; Samitier J; Sánchez S
    Lab Chip; 2015 Aug; 15(15):3111-5. PubMed ID: 26066320
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fabrication and application of nanofibrous scaffolds in tissue engineering.
    Li WJ; Tuan RS
    Curr Protoc Cell Biol; 2009 Mar; Chapter 25():Unit 25.2. PubMed ID: 19283731
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electrospun silk biomaterial scaffolds for regenerative medicine.
    Zhang X; Reagan MR; Kaplan DL
    Adv Drug Deliv Rev; 2009 Oct; 61(12):988-1006. PubMed ID: 19643154
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.