These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

417 related articles for article (PubMed ID: 24024524)

  • 1. Chronic lung disease in the preterm infant. Lessons learned from animal models.
    Hilgendorff A; Reiss I; Ehrhardt H; Eickelberg O; Alvira CM
    Am J Respir Cell Mol Biol; 2014 Feb; 50(2):233-45. PubMed ID: 24024524
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Impaired Autophagic Activity Contributes to the Pathogenesis of Bronchopulmonary Dysplasia. Evidence from Murine and Baboon Models.
    Zhang L; Soni S; Hekimoglu E; Berkelhamer S; Çataltepe S
    Am J Respir Cell Mol Biol; 2020 Sep; 63(3):338-348. PubMed ID: 32374619
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Exosomal microRNA predicts and protects against severe bronchopulmonary dysplasia in extremely premature infants.
    Lal CV; Olave N; Travers C; Rezonzew G; Dolma K; Simpson A; Halloran B; Aghai Z; Das P; Sharma N; Xu X; Genschmer K; Russell D; Szul T; Yi N; Blalock JE; Gaggar A; Bhandari V; Ambalavanan N
    JCI Insight; 2018 Mar; 3(5):. PubMed ID: 29515035
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Animal models of bronchopulmonary dysplasia. The preterm and term rabbit models.
    D'Angio CT; Ryan RM
    Am J Physiol Lung Cell Mol Physiol; 2014 Dec; 307(12):L959-69. PubMed ID: 25326582
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hyperoxia modulates TGF-beta/BMP signaling in a mouse model of bronchopulmonary dysplasia.
    Alejandre-Alcázar MA; Kwapiszewska G; Reiss I; Amarie OV; Marsh LM; Sevilla-Pérez J; Wygrecka M; Eul B; Köbrich S; Hesse M; Schermuly RT; Seeger W; Eickelberg O; Morty RE
    Am J Physiol Lung Cell Mol Physiol; 2007 Feb; 292(2):L537-49. PubMed ID: 17071723
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Phenotypic assessment of pulmonary hypertension using high-resolution echocardiography is feasible in neonatal mice with experimental bronchopulmonary dysplasia and pulmonary hypertension: a step toward preventing chronic obstructive pulmonary disease.
    Reynolds CL; Zhang S; Shrestha AK; Barrios R; Shivanna B
    Int J Chron Obstruct Pulmon Dis; 2016; 11():1597-605. PubMed ID: 27478373
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Relationship between impaired BMP signalling and clinical risk factors at early-stage vascular injury in the preterm infant.
    Heydarian M; Oak P; Zhang X; Kamgari N; Kindt A; Koschlig M; Pritzke T; Gonzalez-Rodriguez E; Förster K; Morty RE; Häfner F; Hübener C; Flemmer AW; Yildirim AO; Sudheendra D; Tian X; Petrera A; Kirsten H; Ahnert P; Morrell N; Desai TJ; Sucre J; Spiekerkoetter E; Hilgendorff A
    Thorax; 2022 Dec; 77(12):1176-1186. PubMed ID: 35580897
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Treatment with Geranylgeranylacetone Induces Heat Shock Protein 70 and Attenuates Neonatal Hyperoxic Lung Injury in a Model of Bronchopulmonary Dysplasia.
    Tokuriki S; Igarashi A; Okuno T; Ohta G; Naiki H; Ohshima Y
    Lung; 2017 Aug; 195(4):469-476. PubMed ID: 28447205
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Inhalation or instillation of steroids for the prevention of bronchopulmonary dysplasia.
    Bassler D
    Neonatology; 2015; 107(4):358-9. PubMed ID: 26044104
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Deficits in lung alveolarization and function after systemic maternal inflammation and neonatal hyperoxia exposure.
    Velten M; Heyob KM; Rogers LK; Welty SE
    J Appl Physiol (1985); 2010 May; 108(5):1347-56. PubMed ID: 20223995
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An experimental animal model of bronchopulmonary dysplasia: Secondary publication.
    Namba F
    Pediatr Int; 2021 May; 63(5):504-509. PubMed ID: 33465831
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Inhibition of β-catenin signaling improves alveolarization and reduces pulmonary hypertension in experimental bronchopulmonary dysplasia.
    Alapati D; Rong M; Chen S; Hehre D; Hummler SC; Wu S
    Am J Respir Cell Mol Biol; 2014 Jul; 51(1):104-13. PubMed ID: 24484510
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Impaired pulmonary vascular development in bronchopulmonary dysplasia.
    Baker CD; Abman SH
    Neonatology; 2015; 107(4):344-51. PubMed ID: 26044102
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Connective tissue growth factor antibody therapy attenuates hyperoxia-induced lung injury in neonatal rats.
    Alapati D; Rong M; Chen S; Hehre D; Rodriguez MM; Lipson KE; Wu S
    Am J Respir Cell Mol Biol; 2011 Dec; 45(6):1169-77. PubMed ID: 21659659
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Efficacy of Leukadherin-1 in the Prevention of Hyperoxia-Induced Lung Injury in Neonatal Rats.
    Jagarapu J; Kelchtermans J; Rong M; Chen S; Hehre D; Hummler S; Faridi MH; Gupta V; Wu S
    Am J Respir Cell Mol Biol; 2015 Dec; 53(6):793-801. PubMed ID: 25909334
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Long non-coding RNA MALAT1 protects preterm infants with bronchopulmonary dysplasia by inhibiting cell apoptosis.
    Cai C; Qiu J; Qiu G; Chen Y; Song Z; Li J; Gong X
    BMC Pulm Med; 2017 Dec; 17(1):199. PubMed ID: 29237426
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Caffeine prevents hyperoxia-induced lung injury in neonatal mice through NLRP3 inflammasome and NF-κB pathway.
    Chen S; Wu Q; Zhong D; Li C; Du L
    Respir Res; 2020 Jun; 21(1):140. PubMed ID: 32513156
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Targeting glycogen synthase kinase-3β to prevent hyperoxia-induced lung injury in neonatal rats.
    Hummler SC; Rong M; Chen S; Hehre D; Alapati D; Wu S
    Am J Respir Cell Mol Biol; 2013 May; 48(5):578-88. PubMed ID: 23328640
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Angiogenesis in lung development, injury and repair: implications for chronic lung disease of prematurity.
    Thébaud B
    Neonatology; 2007; 91(4):291-7. PubMed ID: 17575472
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Strain-dependent effects on lung structure, matrix remodeling, and Stat3/Smad2 signaling in C57BL/6N and C57BL/6J mice after neonatal hyperoxia.
    Will JP; Hirani D; Thielen F; Klein F; Vohlen C; Dinger K; Dötsch J; Alejandre Alcázar MA
    Am J Physiol Regul Integr Comp Physiol; 2019 Jul; 317(1):R169-R181. PubMed ID: 31067073
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 21.