These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 24024591)

  • 1. Why do arginine and lysine organize lipids differently? Insights from coarse-grained and atomistic simulations.
    Wu Z; Cui Q; Yethiraj A
    J Phys Chem B; 2013 Oct; 117(40):12145-56. PubMed ID: 24024591
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mixing MARTINI: electrostatic coupling in hybrid atomistic-coarse-grained biomolecular simulations.
    Wassenaar TA; Ingólfsson HI; Priess M; Marrink SJ; Schäfer LV
    J Phys Chem B; 2013 Apr; 117(13):3516-30. PubMed ID: 23406326
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evaluating Force Fields for the Computational Prediction of Ionized Arginine and Lysine Side-Chains Partitioning into Lipid Bilayers and Octanol.
    Sun D; Forsman J; Woodward CE
    J Chem Theory Comput; 2015 Apr; 11(4):1775-91. PubMed ID: 26574387
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Antimicrobial selectivity based on zwitterionic lipids and underlying balance of interactions.
    von Deuster CI; Knecht V
    Biochim Biophys Acta; 2012 Sep; 1818(9):2192-201. PubMed ID: 22613177
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A New Coarse-Grained Force Field for Membrane-Peptide Simulations.
    Wu Z; Cui Q; Yethiraj A
    J Chem Theory Comput; 2011 Nov; 7(11):3793-802. PubMed ID: 26598270
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Molecular dynamics simulations of pentapeptides at interfaces: salt bridge and cation-pi interactions.
    Aliste MP; MacCallum JL; Tieleman DP
    Biochemistry; 2003 Aug; 42(30):8976-87. PubMed ID: 12885230
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The different interactions of lysine and arginine side chains with lipid membranes.
    Li L; Vorobyov I; Allen TW
    J Phys Chem B; 2013 Oct; 117(40):11906-20. PubMed ID: 24007457
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of variations in the structure of a polyleucine-based alpha-helical transmembrane peptide on its interaction with phosphatidylglycerol bilayers.
    Liu F; Lewis RN; Hodges RS; McElhaney RN
    Biochemistry; 2004 Mar; 43(12):3679-87. PubMed ID: 15035638
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Implicit solvent systematic coarse-graining of dioleoylphosphatidylethanolamine lipids: From the inverted hexagonal to the bilayer structure.
    Mortezazadeh S; Jamali Y; Naderi-Manesh H; Lyubartsev AP
    PLoS One; 2019; 14(4):e0214673. PubMed ID: 30951539
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Arginine in α-defensins: differential effects on bactericidal activity correspond to geometry of membrane curvature generation and peptide-lipid phase behavior.
    Schmidt NW; Tai KP; Kamdar K; Mishra A; Lai GH; Zhao K; Ouellette AJ; Wong GC
    J Biol Chem; 2012 Jun; 287(26):21866-72. PubMed ID: 22566697
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Roles of arginine and lysine residues in the translocation of a cell-penetrating peptide from (13)C, (31)P, and (19)F solid-state NMR.
    Su Y; Doherty T; Waring AJ; Ruchala P; Hong M
    Biochemistry; 2009 Jun; 48(21):4587-95. PubMed ID: 19364134
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Human neutrophil peptide 1 variants bearing arginine modified cationic side chains: effects on membrane partitioning.
    Bonucci A; Balducci E; Martinelli M; Pogni R
    Biophys Chem; 2014 Jun; 190-191():32-40. PubMed ID: 24820901
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mechanism of liposome destabilization by polycationic amino acids.
    Epand RM; Lim W
    Biosci Rep; 1995 Jun; 15(3):151-60. PubMed ID: 7579040
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Coarse-grained model of titrating peptides interacting with lipid bilayers.
    Tesei G; Vazdar M; Lund M
    J Chem Phys; 2018 Dec; 149(24):244108. PubMed ID: 30599743
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Phospholipid flop induced by transmembrane peptides in model membranes is modulated by lipid composition.
    Kol MA; van Laak AN; Rijkers DT; Killian JA; de Kroon AI; de Kruijff B
    Biochemistry; 2003 Jan; 42(1):231-7. PubMed ID: 12515559
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of arginine-rich peptide length on the structure and binding strength of siRNA-peptide complexes.
    Kim M; Kim HR; Chae SY; Larson RG; Lee H; Park JC
    J Phys Chem B; 2013 Jun; 117(23):6917-26. PubMed ID: 23697608
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Tryptophan-anchored transmembrane peptides promote formation of nonlamellar phases in phosphatidylethanolamine model membranes in a mismatch-dependent manner.
    van der Wel PC; Pott T; Morein S; Greathouse DV; Koeppe RE; Killian JA
    Biochemistry; 2000 Mar; 39(11):3124-33. PubMed ID: 10715134
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ganglioside-Lipid and Ganglioside-Protein Interactions Revealed by Coarse-Grained and Atomistic Molecular Dynamics Simulations.
    Gu RX; Ingólfsson HI; de Vries AH; Marrink SJ; Tieleman DP
    J Phys Chem B; 2017 Apr; 121(15):3262-3275. PubMed ID: 27610460
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Assessing atomistic and coarse-grained force fields for protein-lipid interactions: the formidable challenge of an ionizable side chain in a membrane.
    Vorobyov I; Li L; Allen TW
    J Phys Chem B; 2008 Aug; 112(32):9588-602. PubMed ID: 18636764
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nonlamellar phases induced by the interaction of gramicidin S with lipid bilayers. A possible relationship to membrane-disrupting activity.
    Prenner EJ; Lewis RN; Neuman KC; Gruner SM; Kondejewski LH; Hodges RS; McElhaney RN
    Biochemistry; 1997 Jun; 36(25):7906-16. PubMed ID: 9201936
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.