These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
295 related articles for article (PubMed ID: 24024641)
1. Predicting expected progeny difference for marbling score in Angus cattle using artificial neural networks and Bayesian regression models. Okut H; Wu XL; Rosa GJ; Bauck S; Woodward BW; Schnabel RD; Taylor JF; Gianola D Genet Sel Evol; 2013 Sep; 45(1):34. PubMed ID: 24024641 [TBL] [Abstract][Full Text] [Related]
2. Predicting complex quantitative traits with Bayesian neural networks: a case study with Jersey cows and wheat. Gianola D; Okut H; Weigel KA; Rosa GJ BMC Genet; 2011 Oct; 12():87. PubMed ID: 21981731 [TBL] [Abstract][Full Text] [Related]
3. Application of neural networks with back-propagation to genome-enabled prediction of complex traits in Holstein-Friesian and German Fleckvieh cattle. Ehret A; Hochstuhl D; Gianola D; Thaller G Genet Sel Evol; 2015 Mar; 47(1):22. PubMed ID: 25886037 [TBL] [Abstract][Full Text] [Related]
4. Predicting dry matter intake in Canadian Holstein dairy cattle using milk mid-infrared reflectance spectroscopy and other commonly available predictors via artificial neural networks. Shadpour S; Chud TCS; Hailemariam D; Oliveira HR; Plastow G; Stothard P; Lassen J; Baldwin R; Miglior F; Baes CF; Tulpan D; Schenkel FS J Dairy Sci; 2022 Oct; 105(10):8257-8271. PubMed ID: 36055837 [TBL] [Abstract][Full Text] [Related]
5. Improving genomic prediction accuracy for meat tenderness in Nellore cattle using artificial neural networks. Brito Lopes F; Magnabosco CU; Passafaro TL; Brunes LC; Costa MFO; Eifert EC; Narciso MG; Rosa GJM; Lobo RB; Baldi F J Anim Breed Genet; 2020 Sep; 137(5):438-448. PubMed ID: 32020678 [TBL] [Abstract][Full Text] [Related]
6. Accuracy of predicting genomic breeding values for carcass merit traits in Angus and Charolais beef cattle. Chen L; Vinsky M; Li C Anim Genet; 2015 Feb; 46(1):55-9. PubMed ID: 25393962 [TBL] [Abstract][Full Text] [Related]
7. Accuracy of predicting genomic breeding values for residual feed intake in Angus and Charolais beef cattle. Chen L; Schenkel F; Vinsky M; Crews DH; Li C J Anim Sci; 2013 Oct; 91(10):4669-78. PubMed ID: 24078618 [TBL] [Abstract][Full Text] [Related]
8. A comparison of five methods to predict genomic breeding values of dairy bulls from genome-wide SNP markers. Moser G; Tier B; Crump RE; Khatkar MS; Raadsma HW Genet Sel Evol; 2009 Dec; 41(1):56. PubMed ID: 20043835 [TBL] [Abstract][Full Text] [Related]
9. Application of Bayesian least absolute shrinkage and selection operator (LASSO) and BayesCπ methods for genomic selection in French Holstein and Montbéliarde breeds. Colombani C; Legarra A; Fritz S; Guillaume F; Croiseau P; Ducrocq V; Robert-Granié C J Dairy Sci; 2013 Jan; 96(1):575-91. PubMed ID: 23127905 [TBL] [Abstract][Full Text] [Related]
10. Comparison of methods for the implementation of genome-assisted evaluation of Spanish dairy cattle. Jiménez-Montero JA; González-Recio O; Alenda R J Dairy Sci; 2013 Jan; 96(1):625-34. PubMed ID: 23102955 [TBL] [Abstract][Full Text] [Related]
11. Genome-enabled prediction of meat and carcass traits using Bayesian regression, single-step genomic best linear unbiased prediction and blending methods in Nelore cattle. Lopes FB; Baldi F; Passafaro TL; Brunes LC; Costa MFO; Eifert EC; Narciso MG; Rosa GJM; Lobo RB; Magnabosco CU Animal; 2021 Jan; 15(1):100006. PubMed ID: 33516009 [TBL] [Abstract][Full Text] [Related]
12. Comparison of genomic predictions using genomic relationship matrices built with different weighting factors to account for locus-specific variances. Su G; Christensen OF; Janss L; Lund MS J Dairy Sci; 2014 Oct; 97(10):6547-59. PubMed ID: 25129495 [TBL] [Abstract][Full Text] [Related]
13. Accuracy of prediction of simulated polygenic phenotypes and their underlying quantitative trait loci genotypes using real or imputed whole-genome markers in cattle. Hassani S; Saatchi M; Fernando RL; Garrick DJ Genet Sel Evol; 2015 Dec; 47():99. PubMed ID: 26698091 [TBL] [Abstract][Full Text] [Related]
14. Multibreed genomic prediction using multitrait genomic residual maximum likelihood and multitask Bayesian variable selection. Calus MPL; Goddard ME; Wientjes YCJ; Bowman PJ; Hayes BJ J Dairy Sci; 2018 May; 101(5):4279-4294. PubMed ID: 29550121 [TBL] [Abstract][Full Text] [Related]
15. Accuracy of Igenity genomically estimated breeding values for predicting Australian Angus BREEDPLAN traits. Boerner V; Johnston D; Wu XL; Bauck S J Anim Sci; 2015 Feb; 93(2):513-21. PubMed ID: 25549982 [TBL] [Abstract][Full Text] [Related]
16. Use of a Bayesian model including QTL markers increases prediction reliability when test animals are distant from the reference population. Ma P; Lund MS; Aamand GP; Su G J Dairy Sci; 2019 Aug; 102(8):7237-7247. PubMed ID: 31155255 [TBL] [Abstract][Full Text] [Related]
17. Interpretable artificial neural networks incorporating Bayesian alphabet models for genome-wide prediction and association studies. Zhao T; Fernando R; Cheng H G3 (Bethesda); 2021 Sep; 11(10):. PubMed ID: 34499126 [TBL] [Abstract][Full Text] [Related]
18. Comparison of Bayesian models to estimate direct genomic values in multi-breed commercial beef cattle. Rolf MM; Garrick DJ; Fountain T; Ramey HR; Weaber RL; Decker JE; Pollak EJ; Schnabel RD; Taylor JF Genet Sel Evol; 2015 Apr; 47(1):23. PubMed ID: 25884158 [TBL] [Abstract][Full Text] [Related]
19. Genomic prediction of simulated multibreed and purebred performance using observed fifty thousand single nucleotide polymorphism genotypes. Kizilkaya K; Fernando RL; Garrick DJ J Anim Sci; 2010 Feb; 88(2):544-51. PubMed ID: 19820059 [TBL] [Abstract][Full Text] [Related]