BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

195 related articles for article (PubMed ID: 24024674)

  • 1. Promoting formation of noncrystalline Li2O2 in the Li-O2 battery with RuO2 nanoparticles.
    Yilmaz E; Yogi C; Yamanaka K; Ohta T; Byon HR
    Nano Lett; 2013 Oct; 13(10):4679-84. PubMed ID: 24024674
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Mo2C/Carbon Nanotube Composite Cathode for Lithium-Oxygen Batteries with High Energy Efficiency and Long Cycle Life.
    Kwak WJ; Lau KC; Shin CD; Amine K; Curtiss LA; Sun YK
    ACS Nano; 2015 Apr; 9(4):4129-37. PubMed ID: 25801846
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Influence of Binders and Solvents on Stability of Ru/RuO
    Vankova S; Francia C; Amici J; Zeng J; Bodoardo S; Penazzi N; Collins G; Geaney H; O'Dwyer C
    ChemSusChem; 2017 Feb; 10(3):575-586. PubMed ID: 27899004
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Tailored Combination of Low Dimensional Catalysts for Efficient Oxygen Reduction and Evolution in Li-O2 Batteries.
    Yoon KR; Kim DS; Ryu WH; Song SH; Youn DY; Jung JW; Jeon S; Park YJ; Kim ID
    ChemSusChem; 2016 Aug; 9(16):2080-8. PubMed ID: 27453065
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ruthenium-based electrocatalysts supported on reduced graphene oxide for lithium-air batteries.
    Jung HG; Jeong YS; Park JB; Sun YK; Scrosati B; Lee YJ
    ACS Nano; 2013 Apr; 7(4):3532-9. PubMed ID: 23540570
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Binder-free carbonized bacterial cellulose-supported ruthenium nanoparticles for Li-O2 batteries.
    Tong S; Zheng M; Lu Y; Lin Z; Zhang X; He P; Zhou H
    Chem Commun (Camb); 2015 Apr; 51(34):7302-4. PubMed ID: 25812629
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Carbon-Free O
    Liu Z; Feng N; Shen Z; Li F; He P; Zhang H; Zhou H
    ChemSusChem; 2017 Jul; 10(13):2714-2719. PubMed ID: 28482113
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The Effect of Potassium Impurities Deliberately Introduced into Activated Carbon Cathodes on the Performance of Lithium-Oxygen Batteries.
    Zhai D; Lau KC; Wang HH; Wen J; Miller DJ; Kang F; Li B; Zavadil K; Curtiss LA
    ChemSusChem; 2015 Dec; 8(24):4235-41. PubMed ID: 26630086
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Using elastin protein to develop highly efficient air cathodes for lithium-O2 batteries.
    Guo G; Yao X; Ang H; Tan H; Zhang Y; Guo Y; Fong E; Yan Q
    Nanotechnology; 2016 Jan; 27(4):045401. PubMed ID: 26657319
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The mechanisms of oxygen reduction and evolution reactions in nonaqueous lithium-oxygen batteries.
    Cao R; Walter ED; Xu W; Nasybulin EN; Bhattacharya P; Bowden ME; Engelhard MH; Zhang JG
    ChemSusChem; 2014 Sep; 7(9):2436-40. PubMed ID: 25045007
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Li-O(2) battery based on highly efficient Sb-doped tin oxide supported Ru nanoparticles.
    Li F; Tang DM; Jian Z; Liu D; Golberg D; Yamada A; Zhou H
    Adv Mater; 2014 Jul; 26(27):4659-64. PubMed ID: 24861825
    [TBL] [Abstract][Full Text] [Related]  

  • 12. MnCo
    Cao X; Sun Z; Zheng X; Jin C; Tian J; Li X; Yang R
    ChemSusChem; 2018 Feb; 11(3):574-579. PubMed ID: 29235727
    [TBL] [Abstract][Full Text] [Related]  

  • 13. High-Performance Li-O
    Wang G; Tu F; Xie J; Du G; Zhang S; Cao G; Zhao X
    Adv Sci (Weinh); 2016 Oct; 3(10):1500339. PubMed ID: 27840792
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Catalytic activity trends of oxygen reduction reaction for nonaqueous Li-air batteries.
    Lu YC; Gasteiger HA; Shao-Horn Y
    J Am Chem Soc; 2011 Nov; 133(47):19048-51. PubMed ID: 22044022
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An all-nanosheet OER/ORR bifunctional electrocatalyst for both aprotic and aqueous Li-O
    Zhang M; Zou L; Yang C; Chen Y; Shen Z; Bo C
    Nanoscale; 2019 Feb; 11(6):2855-2862. PubMed ID: 30681684
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Carbon-coated Si nanoparticles dispersed in carbon nanotube networks as anode material for lithium-ion batteries.
    Xue L; Xu G; Li Y; Li S; Fu K; Shi Q; Zhang X
    ACS Appl Mater Interfaces; 2013 Jan; 5(1):21-5. PubMed ID: 23206443
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enabling catalytic oxidation of Li2O2 at the liquid-solid interface: the evolution of an aprotic Li-O2 battery.
    Feng N; He P; Zhou H
    ChemSusChem; 2015 Feb; 8(4):600-2. PubMed ID: 25641874
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dual Heteroatom-Doped Carbon Nanofoam-Wrapped Iron Monosulfide Nanoparticles: An Efficient Cathode Catalyst for Li-O
    Ramakrishnan P; Shanmugam S; Kim JH
    ChemSusChem; 2017 Apr; 10(7):1554-1562. PubMed ID: 28145092
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Determining the Facile Routes for Oxygen Evolution Reaction by In Situ Probing of Li-O
    Hong M; Yang C; Wong RA; Nakao A; Choi HC; Byon HR
    J Am Chem Soc; 2018 May; 140(20):6190-6193. PubMed ID: 29739188
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Synthesis of a metallic mesoporous pyrochlore as a catalyst for lithium–O2 batteries.
    Oh SH; Black R; Pomerantseva E; Lee JH; Nazar LF
    Nat Chem; 2012 Dec; 4(12):1004-10. PubMed ID: 23174980
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.