These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
4. Structural basis of archaeal RNA polymerase transcription elongation and Spt4/5 recruitment. Tarău D; Grünberger F; Pilsl M; Reichelt R; Heiß F; König S; Urlaub H; Hausner W; Engel C; Grohmann D Nucleic Acids Res; 2024 Jun; 52(10):6017-6035. PubMed ID: 38709902 [TBL] [Abstract][Full Text] [Related]
5. Determinants of transcription initiation by archaeal RNA polymerase. Bartlett MS Curr Opin Microbiol; 2005 Dec; 8(6):677-84. PubMed ID: 16249119 [TBL] [Abstract][Full Text] [Related]
6. The initiation factor TFE and the elongation factor Spt4/5 compete for the RNAP clamp during transcription initiation and elongation. Grohmann D; Nagy J; Chakraborty A; Klose D; Fielden D; Ebright RH; Michaelis J; Werner F Mol Cell; 2011 Jul; 43(2):263-74. PubMed ID: 21777815 [TBL] [Abstract][Full Text] [Related]
7. Mutational studies of archaeal RNA polymerase and analysis of hybrid RNA polymerases. Thomm M; Reich C; Grünberg S; Naji S Biochem Soc Trans; 2009 Feb; 37(Pt 1):18-22. PubMed ID: 19143595 [TBL] [Abstract][Full Text] [Related]
8. RNAP subunits F/E (RPB4/7) are stably associated with archaeal RNA polymerase: using fluorescence anisotropy to monitor RNAP assembly in vitro. Grohmann D; Hirtreiter A; Werner F Biochem J; 2009 Jul; 421(3):339-43. PubMed ID: 19492989 [TBL] [Abstract][Full Text] [Related]
9. Evolution of complex RNA polymerases: the complete archaeal RNA polymerase structure. Korkhin Y; Unligil UM; Littlefield O; Nelson PJ; Stuart DI; Sigler PB; Bell SD; Abrescia NG PLoS Biol; 2009 May; 7(5):e1000102. PubMed ID: 19419240 [TBL] [Abstract][Full Text] [Related]
10. Rearrangement of the RNA polymerase subunit H and the lower jaw in archaeal elongation complexes. Grünberg S; Reich C; Zeller ME; Bartlett MS; Thomm M Nucleic Acids Res; 2010 Apr; 38(6):1950-63. PubMed ID: 20040576 [TBL] [Abstract][Full Text] [Related]
11. Molecular mechanisms of archaeal RNA polymerase. Grohmann D; Hirtreiter A; Werner F Biochem Soc Trans; 2009 Feb; 37(Pt 1):12-7. PubMed ID: 19143594 [TBL] [Abstract][Full Text] [Related]
12. Same same but different: The evolution of TBP in archaea and their eukaryotic offspring. Blombach F; Grohmann D Transcription; 2017 May; 8(3):162-168. PubMed ID: 28340330 [TBL] [Abstract][Full Text] [Related]
13. Identification of a conserved archaeal RNA polymerase subunit contacted by the basal transcription factor TFB. Magill CP; Jackson SP; Bell SD J Biol Chem; 2001 Dec; 276(50):46693-6. PubMed ID: 11606563 [TBL] [Abstract][Full Text] [Related]
14. Archaeal RNA polymerase: the influence of the protruding stalk in crystal packing and preliminary biophysical analysis of the Rpo13 subunit. Wojtas M; Peralta B; Ondiviela M; Mogni M; Bell SD; Abrescia NG Biochem Soc Trans; 2011 Jan; 39(1):25-30. PubMed ID: 21265742 [TBL] [Abstract][Full Text] [Related]
16. Organization of an activator-bound RNA polymerase holoenzyme. Bose D; Pape T; Burrows PC; Rappas M; Wigneshweraraj SR; Buck M; Zhang X Mol Cell; 2008 Nov; 32(3):337-46. PubMed ID: 18995832 [TBL] [Abstract][Full Text] [Related]
17. TFE and Spt4/5 open and close the RNA polymerase clamp during the transcription cycle. Schulz S; Gietl A; Smollett K; Tinnefeld P; Werner F; Grohmann D Proc Natl Acad Sci U S A; 2016 Mar; 113(13):E1816-25. PubMed ID: 26979960 [TBL] [Abstract][Full Text] [Related]
18. Transcription in the archaea: basal factors, regulation, and stress gene expression. Hickey AJ; Conway de Macario E; Macario AJ Crit Rev Biochem Mol Biol; 2002; 37(4):199-258. PubMed ID: 12236465 [TBL] [Abstract][Full Text] [Related]
19. Multiple active centers of multi-subunit RNA polymerases. Yuzenkova Y; Roghanian M; Zenkin N Transcription; 2012; 3(3):115-8. PubMed ID: 22771945 [TBL] [Abstract][Full Text] [Related]
20. The archaeal exosome. Evguenieva-Hackenberg E Adv Exp Med Biol; 2010; 702():29-38. PubMed ID: 21618872 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]