BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 24024748)

  • 1. Whiskers-less HIV-protease: a possible way for HIV-1 deactivation.
    Dayer MR; Dayer MS
    J Biomed Sci; 2013 Sep; 20(1):67. PubMed ID: 24024748
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Protein promiscuity: drug resistance and native functions--HIV-1 case.
    Fernández A; Tawfik DS; Berkhout B; Sanders R; Kloczkowski A; Sen T; Jernigan B
    J Biomol Struct Dyn; 2005 Jun; 22(6):615-24. PubMed ID: 15842167
    [TBL] [Abstract][Full Text] [Related]  

  • 3. How Mutations Can Resist Drug Binding yet Keep HIV-1 Protease Functional.
    Appadurai R; Senapati S
    Biochemistry; 2017 Jun; 56(23):2907-2920. PubMed ID: 28505418
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structural studies on molecular mechanisms of Nelfinavir resistance caused by non-active site mutation V77I in HIV-1 protease.
    Gupta A; Jamal S; Goyal S; Jain R; Wahi D; Grover A
    BMC Bioinformatics; 2015; 16 Suppl 19(Suppl 19):S10. PubMed ID: 26695135
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An alternative strategy for inhibiting multidrug-resistant mutants of the dimeric HIV-1 protease by targeting the subunit interface.
    Bannwarth L; Reboud-Ravaux M
    Biochem Soc Trans; 2007 Jun; 35(Pt 3):551-4. PubMed ID: 17511649
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A molecular dynamics study comparing a wild-type with a multiple drug resistant HIV protease: differences in flap and aspartate 25 cavity dimensions.
    Seibold SA; Cukier RI
    Proteins; 2007 Nov; 69(3):551-65. PubMed ID: 17623840
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Folded monomer of HIV-1 protease.
    Ishima R; Ghirlando R; Tözsér J; Gronenborn AM; Torchia DA; Louis JM
    J Biol Chem; 2001 Dec; 276(52):49110-6. PubMed ID: 11598128
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Small-molecule dimerization inhibitors of wild-type and mutant HIV protease: a focused library approach.
    Shultz MD; Ham YW; Lee SG; Davis DA; Brown C; Chmielewski J
    J Am Chem Soc; 2004 Aug; 126(32):9886-7. PubMed ID: 15303839
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of drug-resistant mutations on the dynamic properties of HIV-1 protease and inhibition by Amprenavir and Darunavir.
    Yu Y; Wang J; Shao Q; Shi J; Zhu W
    Sci Rep; 2015 May; 5():10517. PubMed ID: 26012849
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structural implications of drug-resistant mutants of HIV-1 protease: high-resolution crystal structures of the mutant protease/substrate analogue complexes.
    Mahalingam B; Louis JM; Hung J; Harrison RW; Weber IT
    Proteins; 2001 Jun; 43(4):455-64. PubMed ID: 11340661
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Understanding the basis of I50V-induced affinity decrease in HIV-1 protease via molecular dynamics simulations using polarized force field.
    Duan R; Lazim R; Zhang D
    J Comput Chem; 2015 Sep; 36(25):1885-92. PubMed ID: 26198456
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Multi-drug resistance profile of PR20 HIV-1 protease is attributed to distorted conformational and drug binding landscape: molecular dynamics insights.
    Chetty S; Bhakat S; Martin AJ; Soliman ME
    J Biomol Struct Dyn; 2016; 34(1):135-51. PubMed ID: 25671669
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Molecular dynamics and ligand docking of a hinge region variant of South African HIV-1 subtype C protease.
    Zondagh J; Balakrishnan V; Achilonu I; Dirr HW; Sayed Y
    J Mol Graph Model; 2018 Jun; 82():1-11. PubMed ID: 29625416
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Domain flexibility in retroviral proteases: structural implications for drug resistant mutations.
    Rose RB; Craik CS; Stroud RM
    Biochemistry; 1998 Feb; 37(8):2607-21. PubMed ID: 9485411
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Free energy calculations on dimer stability of the HIV protease using molecular dynamics and a continuum solvent model.
    Wang W; Kollman PA
    J Mol Biol; 2000 Nov; 303(4):567-82. PubMed ID: 11054292
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Yeast two-hybrid assay for examining human immunodeficiency virus protease heterodimer formation with dominant-negative inhibitors and multidrug-resistant variants.
    Todd S; Laboissière MC; Craik CS
    Anal Biochem; 2000 Jan; 277(2):247-53. PubMed ID: 10625514
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Highly drug-resistant HIV-1 protease reveals decreased intra-subunit interactions due to clusters of mutations.
    Kneller DW; Agniswamy J; Harrison RW; Weber IT
    FEBS J; 2020 Aug; 287(15):3235-3254. PubMed ID: 31920003
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Drug resistance conferred by mutations outside the active site through alterations in the dynamic and structural ensemble of HIV-1 protease.
    Ragland DA; Nalivaika EA; Nalam MN; Prachanronarong KL; Cao H; Bandaranayake RM; Cai Y; Kurt-Yilmaz N; Schiffer CA
    J Am Chem Soc; 2014 Aug; 136(34):11956-63. PubMed ID: 25091085
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Activity of linked HIV-1 proteinase dimers containing mutations in the active site region.
    Bagossi P; Cheng YS; Oroszlan S; Tözsér J
    Protein Eng; 1996 Nov; 9(11):997-1003. PubMed ID: 8961352
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Molecular dynamics studies on HIV-1 protease: a comparison of the flap motions between wild type protease and the M46I/G51D double mutant.
    Lauria A; Ippolito M; Almerico AM
    J Mol Model; 2007 Nov; 13(11):1151-6. PubMed ID: 17786489
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.