BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

57 related articles for article (PubMed ID: 24024882)

  • 1. Genetic parameters for milk fatty acids in Danish Holstein cattle based on SNP markers using a Bayesian approach.
    Krag K; Poulsen NA; Larsen MK; Larsen LB; Janss LL; Buitenhuis B
    BMC Genet; 2013 Sep; 14():79. PubMed ID: 24024882
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Saturated fatty acids inhibit unsaturated fatty acid induced glucose uptake involving GLUT10 and aerobic glycolysis in bovine granulosa cells.
    Tao X; Rahimi M; Michaelis M; Görs S; Brenmoehl J; Vanselow J; Baddela VS
    Sci Rep; 2024 Apr; 14(1):9888. PubMed ID: 38688953
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The complex and important cellular and metabolic functions of saturated fatty acids.
    Legrand P; Rioux V
    Lipids; 2010 Oct; 45(10):941-6. PubMed ID: 20625935
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Genetic variants associated with two major bovine milk fatty acids offer opportunities to breed for altered milk fat composition.
    Knutsen TM; Olsen HG; Ketto IA; Sundsaasen KK; Kohler A; Tafintseva V; Svendsen M; Kent MP; Lien S
    Genet Sel Evol; 2022 May; 54(1):35. PubMed ID: 35619070
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Determination of genetic effects and functional SNPs of bovine HTR1B gene on milk fatty acid traits.
    Cao M; Shi L; Peng P; Han B; Liu L; Lv X; Ma Z; Zhang S; Sun D
    BMC Genomics; 2021 Jul; 22(1):575. PubMed ID: 34315401
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A post-GWAS confirming the genetic effects and functional polymorphisms of AGPAT3 gene on milk fatty acids in dairy cattle.
    Shi L; Wu X; Yang Y; Ma Z; Lv X; Liu L; Li Y; Zhao F; Han B; Sun D
    J Anim Sci Biotechnol; 2021 Feb; 12(1):24. PubMed ID: 33522959
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Genetic Parameters of Bovine Milk Fatty Acid Profile, Yield, Composition, Total and Differential Somatic Cell Count.
    Bobbo T; Penasa M; Cassandro M
    Animals (Basel); 2020 Dec; 10(12):. PubMed ID: 33339148
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Impact of SNPs in
    Kęsek-Woźniak MM; Wojtas E; Zielak-Steciwko AE
    Animals (Basel); 2020 Jun; 10(6):. PubMed ID: 32521715
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Genome-wide association study on Fourier transform infrared milk spectra for two Danish dairy cattle breeds.
    Zaalberg RM; Janss L; Buitenhuis AJ
    BMC Genet; 2020 Jan; 21(1):9. PubMed ID: 32005101
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Polymorphisms and genetic effects of PRLR, MOGAT1, MINPP1 and CHUK genes on milk fatty acid traits in Chinese Holstein.
    Shi L; Liu L; Lv X; Ma Z; Yang Y; Li Y; Zhao F; Sun D; Han B
    BMC Genet; 2019 Aug; 20(1):69. PubMed ID: 31419940
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A post-GWAS confirming effects of PRKG1 gene on milk fatty acids in a Chinese Holstein dairy population.
    Shi L; Lv X; Liu L; Yang Y; Ma Z; Han B; Sun D
    BMC Genet; 2019 Jul; 20(1):53. PubMed ID: 31269900
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Impact of the rumen microbiome on milk fatty acid composition of Holstein cattle.
    Buitenhuis B; Lassen J; Noel SJ; Plichta DR; Sørensen P; Difford GF; Poulsen NA
    Genet Sel Evol; 2019 May; 51(1):23. PubMed ID: 31142263
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Reliability of genomic prediction for milk fatty acid composition by using a multi-population reference and incorporating GWAS results.
    Gebreyesus G; Bovenhuis H; Lund MS; Poulsen NA; Sun D; Buitenhuis B
    Genet Sel Evol; 2019 Apr; 51(1):16. PubMed ID: 31029078
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Multi-population GWAS and enrichment analyses reveal novel genomic regions and promising candidate genes underlying bovine milk fatty acid composition.
    Gebreyesus G; Buitenhuis AJ; Poulsen NA; Visker MHPW; Zhang Q; van Valenberg HJF; Sun D; Bovenhuis H
    BMC Genomics; 2019 Mar; 20(1):178. PubMed ID: 30841852
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Genetic improvement of hip-extended scores in 3 breeds of guide dogs using estimated breeding values: Notable progress but more improvement is needed.
    Leighton EA; Holle D; Biery DN; Gregor TP; McDonald-Lynch MB; Wallace ML; Reagan JK; Smith GK
    PLoS One; 2019; 14(2):e0212544. PubMed ID: 30794614
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Determination of Genetic Effects of LIPK and LIPJ Genes on Milk Fatty Acids in Dairy Cattle.
    Shi L; Han B; Liu L; Lv X; Ma Z; Li C; Xu L; Li Y; Zhao F; Yang Y; Sun D
    Genes (Basel); 2019 Jan; 10(2):. PubMed ID: 30696079
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Required properties for markers used to calculate unbiased estimates of the genetic correlation between populations.
    Wientjes YCJ; Calus MPL; Duenk P; Bijma P
    Genet Sel Evol; 2018 Dec; 50(1):65. PubMed ID: 30547748
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Role of Fatty Acids in Milk Fat and the Influence of Selected Factors on Their Variability-A Review.
    Hanuš O; Samková E; Křížová L; Hasoňová L; Kala R
    Molecules; 2018 Jul; 23(7):. PubMed ID: 29973572
    [TBL] [Abstract][Full Text] [Related]  

  • 19. SNP co-association and network analyses identify E2F3, KDM5A and BACH2 as key regulators of the bovine milk fatty acid profile.
    Pegolo S; Dadousis C; Mach N; Ramayo-Caldas Y; Mele M; Conte G; Schiavon S; Bittante G; Cecchinato A
    Sci Rep; 2017 Dec; 7(1):17317. PubMed ID: 29230020
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Multi-population Genomic Relationships for Estimating Current Genetic Variances Within and Genetic Correlations Between Populations.
    Wientjes YCJ; Bijma P; Vandenplas J; Calus MPL
    Genetics; 2017 Oct; 207(2):503-515. PubMed ID: 28821589
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 3.