BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 24025161)

  • 1. Highly conserved base A55 of 16S ribosomal RNA is important for the elongation cycle of protein synthesis.
    Sahu B; Khade PK; Joseph S
    Biochemistry; 2013 Sep; 52(38):6695-701. PubMed ID: 24025161
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Precise alignment of peptidyl tRNA by the decoding center is essential for EF-G-dependent translocation.
    Garcia-Ortega L; Stephen J; Joseph S
    Mol Cell; 2008 Oct; 32(2):292-9. PubMed ID: 18951096
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Elongation in translation as a dynamic interaction among the ribosome, tRNA, and elongation factors EF-G and EF-Tu.
    Agirrezabala X; Frank J
    Q Rev Biophys; 2009 Aug; 42(3):159-200. PubMed ID: 20025795
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Functional role of the sarcin-ricin loop of the 23S rRNA in the elongation cycle of protein synthesis.
    Shi X; Khade PK; Sanbonmatsu KY; Joseph S
    J Mol Biol; 2012 Jun; 419(3-4):125-38. PubMed ID: 22459262
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cleavage of the sarcin-ricin loop of 23S rRNA differentially affects EF-G and EF-Tu binding.
    García-Ortega L; Alvarez-García E; Gavilanes JG; Martínez-del-Pozo A; Joseph S
    Nucleic Acids Res; 2010 Jul; 38(12):4108-19. PubMed ID: 20215430
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evidence for functional interaction between elongation factor Tu and 16S ribosomal RNA.
    Powers T; Noller HF
    Proc Natl Acad Sci U S A; 1993 Feb; 90(4):1364-8. PubMed ID: 8433994
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The identification of the determinants of the cyclic, sequential binding of elongation factors tu and g to the ribosome.
    Yu H; Chan YL; Wool IG
    J Mol Biol; 2009 Feb; 386(3):802-13. PubMed ID: 19154738
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Elongation factor-Tu can repetitively engage aminoacyl-tRNA within the ribosome during the proofreading stage of tRNA selection.
    Morse JC; Girodat D; Burnett BJ; Holm M; Altman RB; Sanbonmatsu KY; Wieden HJ; Blanchard SC
    Proc Natl Acad Sci U S A; 2020 Feb; 117(7):3610-3620. PubMed ID: 32024753
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ribosome interactions of aminoacyl-tRNA and elongation factor Tu in the codon-recognition complex.
    Stark H; Rodnina MV; Wieden HJ; Zemlin F; Wintermeyer W; van Heel M
    Nat Struct Biol; 2002 Nov; 9(11):849-54. PubMed ID: 12379845
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Interaction of elongation factors EF-G and EF-Tu with a conserved loop in 23S RNA.
    Moazed D; Robertson JM; Noller HF
    Nature; 1988 Jul; 334(6180):362-4. PubMed ID: 2455872
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Protein synthesis at atomic resolution: mechanistics of translation in the light of highly resolved structures for the ribosome.
    Wilson DN; Blaha G; Connell SR; Ivanov PV; Jenke H; Stelzl U; Teraoka Y; Nierhaus KH
    Curr Protein Pept Sci; 2002 Feb; 3(1):1-53. PubMed ID: 12370010
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Elongation factor G-induced structural change in helix 34 of 16S rRNA related to translocation on the ribosome.
    Matassova AB; Rodnina MV; Wintermeyer W
    RNA; 2001 Dec; 7(12):1879-85. PubMed ID: 11780642
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Substitution of Val20 by Gly in elongation factor Tu. Effects on the interaction with elongation factors Ts, aminoacyl-tRNA and ribosomes.
    Jacquet E; Parmeggiani A
    Eur J Biochem; 1989 Nov; 185(2):341-6. PubMed ID: 2684669
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Visualization of elongation factor Tu on the Escherichia coli ribosome.
    Stark H; Rodnina MV; Rinke-Appel J; Brimacombe R; Wintermeyer W; van Heel M
    Nature; 1997 Sep; 389(6649):403-6. PubMed ID: 9311785
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Interactions of translational factor EF-G with the bacterial ribosome before and after mRNA translocation.
    Wilson KS; Nechifor R
    J Mol Biol; 2004 Mar; 337(1):15-30. PubMed ID: 15001349
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Conformational changes of the small ribosomal subunit during elongation factor G-dependent tRNA-mRNA translocation.
    Peske F; Savelsbergh A; Katunin VI; Rodnina MV; Wintermeyer W
    J Mol Biol; 2004 Nov; 343(5):1183-94. PubMed ID: 15491605
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Catalysis of ribosomal translocation by sparsomycin.
    Fredrick K; Noller HF
    Science; 2003 May; 300(5622):1159-62. PubMed ID: 12750524
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fluorescence characterization of the interaction of various transfer RNA species with elongation factor Tu.GTP: evidence for a new functional role for elongation factor Tu in protein biosynthesis.
    Janiak F; Dell VA; Abrahamson JK; Watson BS; Miller DL; Johnson AE
    Biochemistry; 1990 May; 29(18):4268-77. PubMed ID: 2190631
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A signal relay between ribosomal protein S12 and elongation factor EF-Tu during decoding of mRNA.
    Gregory ST; Carr JF; Dahlberg AE
    RNA; 2009 Feb; 15(2):208-14. PubMed ID: 19095621
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Eukaryotic translation elongation factor 2 (eEF2) catalyzes reverse translocation of the eukaryotic ribosome.
    Susorov D; Zakharov N; Shuvalova E; Ivanov A; Egorova T; Shuvalov A; Shatsky IN; Alkalaeva E
    J Biol Chem; 2018 Apr; 293(14):5220-5229. PubMed ID: 29453282
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.