These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

84 related articles for article (PubMed ID: 2402608)

  • 1. Osteoclast cytomorphometry and scanning electron microscopy of bone eroded surfaces during leukemic disorders.
    Chappard D; Rossi JF; Bataillle R; Alexandre C
    Scanning Microsc; 1990 Jun; 4(2):323-8. PubMed ID: 2402608
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Histochemical and ultrastructural studies of cartilage resorption and acid phosphatase activity during antler growth in fallow deer (Dama dama).
    Szuwart T; Kierdorf H; Kierdorf U; Clemen G
    Anat Rec; 2002 Sep; 268(1):66-72. PubMed ID: 12209566
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cytomorphometry of osteoclasts.
    Chappard D; Azema J; Alexandre C; Becker JM
    Med Lab Sci; 1989 Oct; 46(4):363-6. PubMed ID: 2615587
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Human osteoclast-like cells in primary culture.
    Lambrecht JT; Marks SC
    Clin Anat; 1996; 9(1):41-5. PubMed ID: 8838279
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evaluation of the osteoclastic population in iliac crest biopsies from 36 normal subjects: a histoenzymologic and histomorphometric study.
    Palle S; Chappard D; Vico L; Riffat G; Alexandre C
    J Bone Miner Res; 1989 Aug; 4(4):501-6. PubMed ID: 2816499
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Paget's disease of bone. A scanning electron microscopic study.
    Chappard D; Alexandre C; Laborier JC; Robert JM; Riffat G
    J Submicrosc Cytol; 1984 Apr; 16(2):341-8. PubMed ID: 6371259
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tartrate-resistant acid phosphatase activity in tibial osteoclasts and cells elicited by ectopic bone and suture implants in normal and osteopetrotic rats.
    Walters LM; Schneider GB
    Bone Miner; 1988 Apr; 4(1):49-62. PubMed ID: 3056541
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of neridronic acid on osteoclasts derived by physiological dual-cell cultures.
    Nicolin V; Bareggi R; Baldini G; Bortul R; Martinelli B; Narducci P
    Acta Histochem; 2007; 109(5):397-402. PubMed ID: 17574655
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Early scanning electron microscopic studies of hard tissue resorption: their relation to current concepts reviewed.
    Boyde A; Jones SJ
    Scanning Microsc; 1987 Mar; 1(1):369-81. PubMed ID: 3589611
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cells of the mononuclear phagocyte series differentiate into osteoclastic lacunar bone resorbing cells.
    Quinn JM; Sabokbar A; Athanasou NA
    J Pathol; 1996 May; 179(1):106-11. PubMed ID: 8691334
    [TBL] [Abstract][Full Text] [Related]  

  • 11. CXCL12 chemokine up-regulates bone resorption and MMP-9 release by human osteoclasts: CXCL12 levels are increased in synovial and bone tissue of rheumatoid arthritis patients.
    Grassi F; Cristino S; Toneguzzi S; Piacentini A; Facchini A; Lisignoli G
    J Cell Physiol; 2004 May; 199(2):244-51. PubMed ID: 15040007
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Morphological and histochemical comparison of the cells elicited by ectopic bone implants and tibial osteoclasts.
    Kelly JD; Schneider GB
    Am J Anat; 1991 Sep; 192(1):45-54. PubMed ID: 1750381
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ultrastructural localization of concanavalin-A binding sites on bone cells: effects of con A on osteoclastic bone resorption.
    Popoff SN; Schneider GB
    Scan Electron Microsc; 1983; (Pt 2):959-67. PubMed ID: 6635581
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Histochemical identification of osteoclasts. Review of current methods and reappraisal of a simple procedure for routine diagnosis on undecalcified human iliac bone biopsies.
    Chappard D; Alexandre C; Riffat G
    Basic Appl Histochem; 1983; 27(2):75-85. PubMed ID: 6193776
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Osteoclasts and tartrate-resistant acid phosphatase-positive mononuclear cells in the mouse femur: a histochemical study].
    Hasegawa K
    Hokkaido Igaku Zasshi; 1994 Jan; 69(1):72-83. PubMed ID: 8119660
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Osteoprotegerin and osteoprotegerin ligand effects on osteoclast formation from human peripheral blood mononuclear cell precursors.
    Shalhoub V; Faust J; Boyle WJ; Dunstan CR; Kelley M; Kaufman S; Scully S; Van G; Lacey DL
    J Cell Biochem; 1999 Feb; 72(2):251-61. PubMed ID: 10022507
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Human tumour-associated macrophages differentiate into osteoclastic bone-resorbing cells.
    Quinn JM; McGee JO; Athanasou NA
    J Pathol; 1998 Jan; 184(1):31-6. PubMed ID: 9582524
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Features of mono- and multinucleated bone resorbing cells of the zebrafish Danio rerio and their contribution to skeletal development, remodeling, and growth.
    Witten PE; Hansen A; Hall BK
    J Morphol; 2001 Dec; 250(3):197-207. PubMed ID: 11746460
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Osteoclastic resorption of calcium phosphates is potentiated in postosteogenic culture conditions.
    de Bruijn JD; Bovell YP; Davies JE; van Blitterswijk CA
    J Biomed Mater Res; 1994 Jan; 28(1):105-12. PubMed ID: 8126021
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Osteoclastic resorption of trabeculae in osteoporotic femoral head: a scanning electron microscopic study].
    Chai BF; Tang XM; Zhou WR
    Zhonghua Wai Ke Za Zhi; 1994 Oct; 32(10):621-5. PubMed ID: 7750424
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.