BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

293 related articles for article (PubMed ID: 24026098)

  • 1. Pleiotropic effects of a mitochondrial-nuclear incompatibility depend upon the accelerating effect of temperature in Drosophila.
    Hoekstra LA; Siddiq MA; Montooth KL
    Genetics; 2013 Nov; 195(3):1129-39. PubMed ID: 24026098
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An Incompatibility between a mitochondrial tRNA and its nuclear-encoded tRNA synthetase compromises development and fitness in Drosophila.
    Meiklejohn CD; Holmbeck MA; Siddiq MA; Abt DN; Rand DM; Montooth KL
    PLoS Genet; 2013; 9(1):e1003238. PubMed ID: 23382693
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mitochondrial-nuclear epistasis affects fitness within species but does not contribute to fixed incompatibilities between species of Drosophila.
    Montooth KL; Meiklejohn CD; Abt DN; Rand DM
    Evolution; 2010 Dec; 64(12):3364-79. PubMed ID: 20624176
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Drosophila model for mito-nuclear diseases generated by an incompatible interaction between tRNA and tRNA synthetase.
    Holmbeck MA; Donner JR; Villa-Cuesta E; Rand DM
    Dis Model Mech; 2015 Aug; 8(8):843-54. PubMed ID: 26035388
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evolution of the Drosophila nuclear pore complex results in multiple hybrid incompatibilities.
    Tang S; Presgraves DC
    Science; 2009 Feb; 323(5915):779-82. PubMed ID: 19197064
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Temperature-Sensitive Reproduction and the Physiological and Evolutionary Potential for Mother's Curse.
    Montooth KL; Dhawanjewar AS; Meiklejohn CD
    Integr Comp Biol; 2019 Oct; 59(4):890-899. PubMed ID: 31173136
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Incompatibility between mitochondrial and nuclear genomes during oogenesis results in ovarian failure and embryonic lethality.
    Zhang C; Montooth KL; Calvi BR
    Development; 2017 Jul; 144(13):2490-2503. PubMed ID: 28576772
    [TBL] [Abstract][Full Text] [Related]  

  • 8. G×G×E for lifespan in Drosophila: mitochondrial, nuclear, and dietary interactions that modify longevity.
    Zhu CT; Ingelmo P; Rand DM
    PLoS Genet; 2014; 10(5):e1004354. PubMed ID: 24832080
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nuclear-mitochondrial epistasis and drosophila aging: introgression of Drosophila simulans mtDNA modifies longevity in D. melanogaster nuclear backgrounds.
    Rand DM; Fry A; Sheldahl L
    Genetics; 2006 Jan; 172(1):329-41. PubMed ID: 16219776
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Intergenomic epistasis for fitness: within-population interactions between cytoplasmic and nuclear genes in Drosophila melanogaster.
    Dowling DK; Friberg U; Hailer F; Arnqvist G
    Genetics; 2007 Jan; 175(1):235-44. PubMed ID: 17151264
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Adaptive evolution drives divergence of a hybrid inviability gene between two species of Drosophila.
    Presgraves DC; Balagopalan L; Abmayr SM; Orr HA
    Nature; 2003 Jun; 423(6941):715-9. PubMed ID: 12802326
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nuclear genomic control of naturally occurring variation in mitochondrial function in Drosophila melanogaster.
    Jumbo-Lucioni P; Bu S; Harbison ST; Slaughter JC; Mackay TF; Moellering DR; De Luca M
    BMC Genomics; 2012 Nov; 13():659. PubMed ID: 23171078
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Experimental evidence supports a sex-specific selective sieve in mitochondrial genome evolution.
    Innocenti P; Morrow EH; Dowling DK
    Science; 2011 May; 332(6031):845-8. PubMed ID: 21566193
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mitochondrial genomic variation drives differential nuclear gene expression in discrete regions of Drosophila gene and protein interaction networks.
    Mossman JA; Biancani LM; Rand DM
    BMC Genomics; 2019 Sep; 20(1):691. PubMed ID: 31477008
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mitonuclear Epistasis for Development Time and Its Modification by Diet in Drosophila.
    Mossman JA; Biancani LM; Zhu CT; Rand DM
    Genetics; 2016 May; 203(1):463-84. PubMed ID: 26966258
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Two Dobzhansky-Muller genes interact to cause hybrid lethality in Drosophila.
    Brideau NJ; Flores HA; Wang J; Maheshwari S; Wang X; Barbash DA
    Science; 2006 Nov; 314(5803):1292-5. PubMed ID: 17124320
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mitochondrial-Nuclear Interactions Mediate Sex-Specific Transcriptional Profiles in Drosophila.
    Mossman JA; Tross JG; Li N; Wu Z; Rand DM
    Genetics; 2016 Oct; 204(2):613-630. PubMed ID: 27558138
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Drosophila mitotypes determine developmental time in a diet and temperature dependent manner.
    Towarnicki SG; Ballard JWO
    J Insect Physiol; 2017 Jul; 100():133-139. PubMed ID: 28619466
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Introgression of Drosophila simulans nuclear pore protein 160 in Drosophila melanogaster alone does not cause inviability but does cause female sterility.
    Sawamura K; Maehara K; Mashino S; Kagesawa T; Kajiwara M; Matsuno K; Takahashi A; Takano-Shimizu T
    Genetics; 2010 Oct; 186(2):669-76. PubMed ID: 20647504
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mitonuclear Interactions Mediate Transcriptional Responses to Hypoxia in Drosophila.
    Mossman JA; Tross JG; Jourjine NA; Li N; Wu Z; Rand DM
    Mol Biol Evol; 2017 Feb; 34(2):447-466. PubMed ID: 28110272
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.