BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

252 related articles for article (PubMed ID: 24026121)

  • 1. Growth factor-mediated mesodermal cell guidance and skeletogenesis during sea urchin gastrulation.
    Adomako-Ankomah A; Ettensohn CA
    Development; 2013 Oct; 140(20):4214-25. PubMed ID: 24026121
    [TBL] [Abstract][Full Text] [Related]  

  • 2. FGF signals guide migration of mesenchymal cells, control skeletal morphogenesis [corrected] and regulate gastrulation during sea urchin development.
    Röttinger E; Saudemont A; Duboc V; Besnardeau L; McClay D; Lepage T
    Development; 2008 Jan; 135(2):353-65. PubMed ID: 18077587
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Localized VEGF signaling from ectoderm to mesenchyme cells controls morphogenesis of the sea urchin embryo skeleton.
    Duloquin L; Lhomond G; Gache C
    Development; 2007 Jun; 134(12):2293-302. PubMed ID: 17507391
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Growth factors and early mesoderm morphogenesis: insights from the sea urchin embryo.
    Adomako-Ankomah A; Ettensohn CA
    Genesis; 2014 Mar; 52(3):158-72. PubMed ID: 24515750
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Signal-dependent regulation of the sea urchin skeletogenic gene regulatory network.
    Sun Z; Ettensohn CA
    Gene Expr Patterns; 2014 Nov; 16(2):93-103. PubMed ID: 25460514
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The Snail repressor is required for PMC ingression in the sea urchin embryo.
    Wu SY; McClay DR
    Development; 2007 Mar; 134(6):1061-70. PubMed ID: 17287249
    [TBL] [Abstract][Full Text] [Related]  

  • 7. microRNA-31 modulates skeletal patterning in the sea urchin embryo.
    Stepicheva NA; Song JL
    Development; 2015 Nov; 142(21):3769-80. PubMed ID: 26400092
    [TBL] [Abstract][Full Text] [Related]  

  • 8. TGF-β sensu stricto signaling regulates skeletal morphogenesis in the sea urchin embryo.
    Sun Z; Ettensohn CA
    Dev Biol; 2017 Jan; 421(2):149-160. PubMed ID: 27955944
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Specific expression of a TRIM-containing factor in ectoderm cells affects the skeletal morphogenetic program of the sea urchin embryo.
    Cavalieri V; Guarcello R; Spinelli G
    Development; 2011 Oct; 138(19):4279-90. PubMed ID: 21896632
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Gene regulatory networks and developmental plasticity in the early sea urchin embryo: alternative deployment of the skeletogenic gene regulatory network.
    Ettensohn CA; Kitazawa C; Cheers MS; Leonard JD; Sharma T
    Development; 2007 Sep; 134(17):3077-87. PubMed ID: 17670786
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cdc42 controls primary mesenchyme cell morphogenesis in the sea urchin embryo.
    Sepúlveda-Ramírez SP; Toledo-Jacobo L; Henson JH; Shuster CB
    Dev Biol; 2018 May; 437(2):140-151. PubMed ID: 29555242
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The evolution of a new cell type was associated with competition for a signaling ligand.
    Ettensohn CA; Adomako-Ankomah A
    PLoS Biol; 2019 Sep; 17(9):e3000460. PubMed ID: 31532765
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Distinct regulatory states control the elongation of individual skeletal rods in the sea urchin embryo.
    Tarsis K; Gildor T; Morgulis M; Ben-Tabou de-Leon S
    Dev Dyn; 2022 Aug; 251(8):1322-1339. PubMed ID: 35403290
    [TBL] [Abstract][Full Text] [Related]  

  • 14. P58-A and P58-B: novel proteins that mediate skeletogenesis in the sea urchin embryo.
    Adomako-Ankomah A; Ettensohn CA
    Dev Biol; 2011 May; 353(1):81-93. PubMed ID: 21362416
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Delayed transition to new cell fates during cellular reprogramming.
    Cheng X; Lyons DC; Socolar JE; McClay DR
    Dev Biol; 2014 Jul; 391(2):147-57. PubMed ID: 24780626
    [TBL] [Abstract][Full Text] [Related]  

  • 16. VEGF signaling activates the matrix metalloproteinases, MmpL7 and MmpL5 at the sites of active skeletal growth and MmpL7 regulates skeletal elongation.
    Morgulis M; Winter MR; Shternhell L; Gildor T; Ben-Tabou de-Leon S
    Dev Biol; 2021 May; 473():80-89. PubMed ID: 33577829
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Primary mesenchyme cell migration in the sea urchin embryo: distribution of directional cues.
    Malinda KM; Ettensohn CA
    Dev Biol; 1994 Aug; 164(2):562-78. PubMed ID: 8045352
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Zygotic hypoxia-inducible factor alpha regulates spicule elongation in the sea urchin embryo.
    Chang WL; Su YH
    Dev Biol; 2022 Apr; 484():63-74. PubMed ID: 35183512
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The role of Brachyury (T) during gastrulation movements in the sea urchin Lytechinus variegatus.
    Gross JM; McClay DR
    Dev Biol; 2001 Nov; 239(1):132-47. PubMed ID: 11784024
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Heterochronic activation of VEGF signaling and the evolution of the skeleton in echinoderm pluteus larvae.
    Morino Y; Koga H; Tachibana K; Shoguchi E; Kiyomoto M; Wada H
    Evol Dev; 2012; 14(5):428-36. PubMed ID: 22947316
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.